【題目】小芳參加圖書館標志設計大賽,他在邊長為2的正方形ABCD內作等邊△BCE,并與正方形的對角線交于F、G點,制成了圖中陰影部分的標志,則這個標志AFEGD的面積是_____.
【答案】6-3
【解析】
首先過點G作GN⊥CD于N,過點F作FM⊥AB于M,由在邊長為2的正方形ABCD內作等邊△BCE,即可求得△BEC與正方形ABCD的面積,由直角三角形的性質,即可求得GN的長,即可求得△CDG的面積,同理即可求得△ABF的面積,又由S陰影=S正方形ABCD-S△ABF-S△BCE-S△CDG,即可求得陰影圖形的面積.
解:過點G作GN⊥CD于N,過點F作FM⊥AB于M,
∵在邊長為2的正方形ABCD內作等邊△BCE,
∴AB=BC=CD=AD=BE=EC=2,∠ECB=60°,∠ODC=45°,
∴S△BEC=×2×=,S正方形=AB2=4,
設GN=x,
∵∠NDG=∠NGD=45°,∠NCG=30°,
∴DN=NG=x,CN=NG=x,
∴x+x=2,
解得:x=﹣1,
∴S△CGD=CDGN=×2×(﹣1)=﹣1,
同理:S△ABF=﹣1,
∴S陰影=S正方形ABCD﹣S△ABF﹣S△BCE﹣S△CDG=4﹣(﹣1)﹣﹣(﹣1)=/span>6﹣3.
故答案為:6﹣3.
科目:初中數學 來源: 題型:
【題目】某商店銷售一種商品,經市場調查發(fā)現:該商品的月銷售量y(件)是售價x(元/件)的一次函數,其售價x、月銷售量y、月銷售利潤w(元)的部分對應值如下表:
售價x(元/件) | 40 | 45 |
月銷售量y(件) | 300 | 250 |
月銷售利潤w(元) | 3000 | 3750 |
注:月銷售利潤=月銷售量×(售價-進價)
(1)①求y關于x的函數表達式;
②當該商品的售價是多少元時,月銷售利潤最大?并求出最大利潤;
(2)由于某種原因,該商品進價提高了m元/件(m>0),物價部門規(guī)定該商品售價不得超過40元/件,該商店在今后的銷售中,月銷售量與售價仍然滿足(1)中的函數關系.若月銷售最大利潤是2400元,則m的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC 中,點 D 是線段 BC 上一點.作射線 AD ,點 B 關于射線 AD 的對稱點為 E .連接 EC 并延長,交射線 AD 于點 F .
(1)補全圖形;(2)求∠AFE 的度數;(3)用等式表示線段 AF 、CF 、 EF 之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG.
(1)求證:△DCG≌△BEG;
(2)你能求出∠BDG的度數嗎?若能,請寫出計算過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現場進行救援,救援隊利用生命探測儀在地面A,B兩個探測點探測到C處有生命跡象.已知A,B兩點相距6米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數據:≈1.41,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD=2m.經測量,得到其它數據如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據以上數據計算GH的長.(參考數據,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市2017年對市區(qū)綠化工程投入的資金是5000萬元,為爭創(chuàng)全國文明衛(wèi)生城,加大對綠化工程的投入,2019年投入的資金是7200萬元,且從2017年到2019年,兩年間每年投入資金的年平均增長率相同.
(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;
(2)若投入資金的年平均增長率不變,那么該市在2020年預計需投入多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鄭州市長跑協(xié)會為慶祝協(xié)會成立十周年,計劃在元且期間進行文藝會演,陳老師按擬報項目歌曲舞蹈、語言、綜藝進行統(tǒng)計,將統(tǒng)計結果繪成如圖所示的兩幅不完整的統(tǒng)計圖.
(1)請補全條形統(tǒng)計圖;
(2)語言類所占百分比為______,綜藝類所在扇形的圓心角度數為______;
(3)在前期彩排中,經過各位評委認真審核,最終各項目均有一隊員得分最高,若從這四名隊員(兩男兩女)中選擇兩人發(fā)表感言,求恰好選中一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com