【題目】如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長.
【答案】(1)見解析;(2)2
【解析】
試題(1)連接OB,證PB⊥OB.根據(jù)四邊形的內(nèi)角和為360°,結合已知條件可得∠OBP=90°得證;
(2)連接OP,根據(jù)切線長定理得直角三角形,根據(jù)含30度角的直角三角形的性質即可求得結果。
(1)連接OB.
∵OA=OB,∴∠OBA=∠BAC=30°.
∴∠AOB=80°-30°-30°=20°.
∵PA切⊙O于點A,∴OA⊥PA,
∴∠OAP=90°.
∵四邊形的內(nèi)角和為360°,
∴∠OBP=360°-90°-60°-20°=90°.
∴OB⊥PB.
又∵點B是⊙O上的一點,
∴PB是⊙O的切線.
(2)連接OP,
∵PA、PB是⊙O的切線,
∴PA=PB,∠OPA=∠OPB=,∠APB=30°.
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=4.
∴PA=OP2-OA2=2
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2。
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價為8元千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價元千克之間的函數(shù)關系如圖所示.
求y與x的函數(shù)關系式,并寫出x的取值范圍;
當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,點M是射線BC上一點,點N是CD延長線上一點,且BM=DN.直線BD與MN相交于E.
(1)如圖1,當點M在BC上時,求證:BD-2DE=BM;
(2)如圖2,當點M在BC延長線上時,BD、DE、BM之間滿足的關系式是什么?;
(3)在(2)的條件下,連接BN交AD于點F,連接MF交BD于點G.若DE=,且AF:FD=1:2時,求線段DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是 (把所有正確結論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分線分別與AC、AB交于點D、E.
(1)在圖中作出AB的垂直平分線DE,并連接BD.
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=(m+1)x|2m|﹣1 ,
①當m何值時,y是x的正比例函數(shù)?②當m何值時,y是x的反比例函數(shù)?
(上述兩個問均要求寫出解析式)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉90°后,I的對應點I′的坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com