【題目】某商家在購進(jìn)一款產(chǎn)品時(shí),由于運(yùn)輸成本及產(chǎn)品成本的提高,該產(chǎn)品第 x 天的成本 y(元/件)與 x(天)之間的關(guān)系如圖所示,并連續(xù) 60 天均以 80 元/件的價(jià)格出售, 第 x 天該產(chǎn)品的銷售量 z(件)與 x(天)滿足關(guān)系式 z=x+15.
(1)第 25 天,該商家的成本是 元,獲得的利潤是 元;
(2)設(shè)第 x 天該商家出售該產(chǎn)品的利潤為 w 元.
①求 w 與 x 之間的函數(shù)關(guān)系式;
②求出第幾天的利潤最大,最大利潤是多少?
【答案】(1)35,1800;(2)①;②第27或28天的利潤最大,最大為1806元.
【解析】
(1)根據(jù)已知條件可知第25天時(shí)的成本為35元,此時(shí)的銷售量為40,則可求得第25天的利潤.
(2)①利用每件利潤×總銷量=總利潤,分當(dāng)0<x≤20時(shí)與20<x≤60時(shí),分別列出函數(shù)關(guān)系式;
②利用一次函數(shù)及二次函數(shù)的性質(zhì)即可解答.
解:(1)由圖象可知,此時(shí)的銷售量為z=25+15=40(件),
設(shè)直線BC的關(guān)系為y=kx+b,將B(20,30)、C(60,70)代入
得:,解得:k=1,b=10,
∴y=x+10,
∴第 25 天,該商家的成本是y=25+10=35(元)
則第25天的利潤為:(8035)×40=1800(元);
故答案為:35,1800;
(2)①當(dāng)0<x≤20時(shí),;
當(dāng)20<x≤60時(shí),,
∴
②當(dāng)0<x≤20時(shí),∵50>0,w隨x的增大而增大,
∴當(dāng)x=20時(shí),w=50×20+750=1750(元),
當(dāng)20<x≤60時(shí),,
∵-1<0,拋物線開口向下,對(duì)稱軸為,
當(dāng)x=27與x=28時(shí),(元)
∵1806>1750,
∴第27或28天的利潤最大,最大為1806元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到點(diǎn),則點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字-3、-1、0、2的四個(gè)小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次試驗(yàn)先攪拌均勻.
(1)從中任取一球,將球上的數(shù)字記為a,則關(guān)于x的元二次方程x2-2x-a+1=0有實(shí)數(shù)根的概率______;
(2)從中任取一球,將球上的數(shù)字作為點(diǎn)的橫坐標(biāo),記為x(不放回);再任取一球,將球上的數(shù)字作為點(diǎn)的縱坐標(biāo),記為y,試用畫樹狀圖(或列表法)表示出點(diǎn)(x,y)所有可能出現(xiàn)的結(jié)果,并求點(diǎn)(x,y)落在第三象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣A、B兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1555萬元改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬元?
(2)根據(jù)我市教育局規(guī)劃計(jì)劃今年對(duì)該縣A、B兩類學(xué)校進(jìn)行改造,要求改造的A類學(xué)校是B類學(xué)校的2倍多2所,在計(jì)劃投入資金不超過1555萬元的條件下,至多能改造多少所A類學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為線段上的一個(gè)動(dòng)點(diǎn),分別以,為邊在的同側(cè)作菱形和菱形.點(diǎn),,在一條直線上,,、分別是對(duì)角線、的中點(diǎn).當(dāng)點(diǎn)在線段上移動(dòng)時(shí),點(diǎn)、之間的距離最短為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四個(gè)外觀與質(zhì)地完全相同的小球,小球上分別標(biāo)有數(shù)字.將四個(gè)小球放置于不透明的盒子中,搖勻后,甲從中隨機(jī)抽取一個(gè)小球,記錄數(shù)字后放回?fù)u勻,乙再隨機(jī)抽取一個(gè).
(1)請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率.
(2)若兩人抽取的數(shù)字和為的倍數(shù),則甲獲勝;若抽取的數(shù)字和為的倍數(shù),則乙獲勝,否則為平局.這個(gè)游戲公平嗎?請(qǐng)用所學(xué)的概率的知識(shí)加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校餐廳中,一張桌子可坐6人,現(xiàn)有以下兩種擺放方式:
(1)當(dāng)有5張桌子時(shí),第一種方式能坐 人,第二種方式能坐 人.
(2)當(dāng)有n張桌子時(shí),第一種方式能坐 人,第二種方式能坐 人.
(3)新學(xué)期有200人在學(xué)校就餐,但餐廳只有60張這樣的餐桌,若你是老師,你打算選擇以下哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)M是曲線C:上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).
(1) 如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M, 試說明點(diǎn)P是△MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);
(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求△MON的自相似點(diǎn)的坐標(biāo);
(3) 是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn),?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)用36000元購進(jìn)甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進(jìn)價(jià)120元,售價(jià)138元;乙種商品每件進(jìn)價(jià)100元,售價(jià)120元.
(1)該商場(chǎng)購進(jìn)甲、乙兩種商品各多少件?
(2)商場(chǎng)第二次以原進(jìn)價(jià)購進(jìn)甲、乙兩種商品,購進(jìn)乙種商品的件數(shù)不變,而購進(jìn)甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價(jià)出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動(dòng)獲利不少于8160元,乙種商品最低售價(jià)為每件多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com