【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】(1)詳見解析;(2)3x+y=180或3x+2y=180;(3)CD=
【解析】
(1)據(jù)完美分割線①△ABC不是等腰三角形,②△ACD等三角形,③△BDC∽△BCA即可
(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時,②如圖3中,當(dāng)AD=AC時,③如圖4中,當(dāng)AC=CD時,分別求出x,y的關(guān)系即可.
(3)由題意可知,AC=AD=2;然后運用相似三角形的性質(zhì)和判定以及勾股定理求解即可.
(1)證明:∵ ∠A=40°,∠B=60°
∴∠ACB=80°
∴△ABC不是等腰三角形
∵CD平分∠ACB
∴∠ACD=∠DCB=40°
∴△ACD是等腰三角形
∵∠A=∠DCB=40° ∠B=∠B
∴ △BCD∽△BAC
∴CD為△ABC的完美分割線
(2)①當(dāng)AD=CD時,如圖
∴∠ACD=∠A=x
∴∠CDA=∠ACD+∠A=2x
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+2x+y=180°,即3x+y=180
②當(dāng)AD=AC時,如圖
∴
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+y=,即3x+2y=180°
③當(dāng)AD=AC時,如圖
,矛盾,舍棄.
故y與x之間的關(guān)系式為3x+y=180或3x+2y=180
(3)由題意得AC=AD=2
∵△BCD∽△BAC
∴= 設(shè)BD=x
則x(x+2)=( )2
解得x1=1 x2=-3(舍去)
∴ BD=1
∵△BCD∽△BAC
∴= 即=
∴CD=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,∠APB=40°,則∠ACB=( ).
A.70°B.80°C.110°D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4 cm,點E從點A出發(fā),以1cm/s的速度沿著折線A→B→C運動,到達點C時停止運動;點F從點B出發(fā),也以1cm/s的速度沿著折線B→C→D運動,到達點D時停止運動.點E、F分別從點A、B同時出發(fā),設(shè)運動時間為t(s).
(1)當(dāng)t為何值時,E、F兩點間的距離為2cm;
(2)連接DE、AF交于點M,
①在整個運動過程中,CM的最小值為 cm;
②當(dāng)CM=4 cm時,此時t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D、E是⊙O上的5等分點,連接AC、CE、EB、BD、DA,得到一個五角星圖形和五邊形MNFGH.有下列3個結(jié)論:① AO⊥BE, ② ∠CGD=∠COD+∠CAD, ③ BM=MN=NE.其中正確的結(jié)論是( )
A.① ②B.① ③C.② ③D.① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點C的對應(yīng)點D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,2個單位長度為半徑的⊙A交軸于點B、C.解答下列問題:
(1)將⊙A向下平移 個單位長度與軸相切;
(2) 將⊙A向左平移得到⊙A1,當(dāng)⊙A1與軸首次相切,此時陰影部分的面積S= ;
(3)將⊙A向左平移 個單位長度與坐標(biāo)軸有三個公共點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2<﹣1,則y1>y2,⑤abc>0.其中正確結(jié)論的個數(shù)是( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A、B 兩點,與y軸交于點C,且點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,﹣3),一次函數(shù)y2=mx+n的圖象過點A、C.
(1)求二次函數(shù)的解析式;
(2)求二次函數(shù)的圖象與x軸的另一個交點A的坐標(biāo);
(3)根據(jù)圖象寫出y2<y1時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90度,AC將梯形分成兩個三角形,其中△ACD是周長為18cm的等邊三角形,則該梯形的中位線的長是( )
A. 9cm B. 12cm C. cm D. 18cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com