【題目】在每個小正方形的邊長為1的網格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.
【答案】5
【解析】
根據(jù)相似三角形的性質確定兩直角邊的比值為1:2,以及6×6網格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.
解:∵在Rt△ABC中,AC=1,BC=2,
∴AB=,AC:BC=1:2,
∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,
若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,
∵===,
∴△ABC∽△DEF,
∴∠DEF=∠C=90°,
∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.
故答案為:5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P在BA的延長線上,PA=AO,PD與⊙O相切于點D,BC⊥AB交PD的延長線于點C,若⊙O的半徑為1,則BC的長是( )
A.1.5B.2C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2018·洛寧縣模擬)如圖1,正△ABC的邊長為4,點P為BC邊上的任意一點,且∠APD=60°,PD交AC于點D,設線段PB的長度為x,圖1中某線段的長度為y,y與x的函數(shù)關系的大致圖象如圖2,則這條線段可能是圖1中的( )
圖1 圖2
A.線段ADB.線段APC.線段PDD.線段CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,,點E為BC的中點,以CD為直徑在正方形外部作半圓CFD,點F為半圓的中點,連接,圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經過點.
(1)求反比例函數(shù)的表達式;
(2)設一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,AC=BC=m,D是AB邊上的一點,將∠B沿著過點D的直線折疊,使點B落在AC邊的點P處(不與點A,C重合),折痕交BC邊于點E.
(1)特例感知 如圖1,若∠C=60°,D是AB的中點,求證:AP=AC;
(2)變式求異 如圖2,若∠C=90°,m=6,AD=7,過點D作DH⊥AC于點H,求DH和AP的長;
(3)化歸探究 如圖3,若m=10,AB=12,且當AD=a時,存在兩次不同的折疊,使點B落在AC邊上兩個不同的位置,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,BE=1,∠DAM=45°,點F在射線AM上,且AF=,過點F作AD的平行線交BA的延長線于點H,CF與AD相交于點G,連接EC、EG、EF.下列結論:①△ECF的面積為;②△AEG的周長為8;③EG2=DG2+BE2;其中正確的是( 。
A.①②③B.①③C.①②D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,點D是邊BC上一動點(不與B、C重合),,DE交AC于點E,且.下列結論:①∽;②當時,與全等;③為直角三角形時,BD等于8或.其中正確的有__________.(選填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在BC邊上,連接AE,∠DAE的平分線AG與CD邊交于點G,與BC的延長線交于點F.設=λ(λ>0).
(1)若AB=2,λ=1,求線段CF的長.
(2)連接EG,若EG⊥AF,
①求證:點G為CD邊的中點.
②求λ的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com