【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.

1)求證:BAD=CBD;

2)若∠AEB=125°,求的長(zhǎng).

【答案】1)見解析;(2 .

【解析】

1)根據(jù)角平分線的定義和圓周角定理即可得到結(jié)論;
2)連接OD,根據(jù)平角定義得到∠AEC=55°,根據(jù)圓周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2BAD=70°,根據(jù)弧長(zhǎng)公式即可得到結(jié)論.

1)證明:AD平分∠BAC.

∴∠CAD=BAD

又∠CBD=CAD

∴∠BAD=CBD

2)解: 連結(jié)OD

∵∠AEB=125°

∴∠AEC=55°

AB是直徑

∴∠ACE=90°

∴∠CAE=35°,∠DAB=35°,

∴∠DOB=2BAD=70°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BCP△ABC形內(nèi)一點(diǎn),且∠APB=∠APC=135°

1)求證:△CPA∽△APB;

2)試求tan∠PCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù) y的圖象與一次函數(shù)ymxb的圖象交于兩點(diǎn)A1,3,Bn,1).

1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

2)根據(jù)圖象,直接回答:當(dāng)x取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值;

3)連接AOBO,求ABO的面積;

4)在y軸上存在點(diǎn)P,使AOP為等腰三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,;②圖象具有對(duì)稱性,對(duì)稱軸是直線;③當(dāng)時(shí),函數(shù)值值的增大而增大;④當(dāng)時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)IABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點(diǎn)與I重合,則圖中陰影部分的周長(zhǎng)為( 。

A. 4.5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AB在雙曲線y x0)上,BCx軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(24),則點(diǎn)D的坐標(biāo)為( 。

A. 0B.,0C.,0D.,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)相同的小正方形網(wǎng)格中,點(diǎn)A、BC、D都在這些小正方形的頂點(diǎn)上,ABCD相交于點(diǎn)P,則tanAPD的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的大致圖象如圖所示(1xh20xA1),下列結(jié)論:① 2ab0;abc0OC2OA,則2bac = 4;④ 3ac0,其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案