【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B3,0)兩點,與y軸交于點C,頂點為D

1)求此拋物線的函數(shù)表達式;

2)以點B為直角頂點作直角三角形BCE,斜邊CE與拋物線交于點P,且CPEP,求點P的坐標;

3)△BOC繞著它的頂點B順時針在第一象限內旋轉,旋轉的角度為α,旋轉后的圖形為△BO1C1.當旋轉后的△BO1C1有一邊在直線BD上時,求△BO1C1不在BD上的頂點的坐標.

【答案】(1)y=﹣x2+2x+3;(2P為( )或();(2C1的坐標為(3+).

【解析】

1)將A、B兩點的坐標代入拋物線y=﹣x2+bx+c,即可求bc的值;

2)過點PPHx軸于HPGy軸于G,連接PB,由條件可證得PCPEPB,證明△PCG≌△PBH,得出PGPH,則P點坐標易求;

3)有兩種可能:當BC1在直線BD上時,過點O1O1MOB,證明△MBO1∽△CBD,得出比例線段可求出BM、O1M的長,則點O1的坐標可求出;當BO1BD重合時,過點Bx軸的垂線BN,過點C1C1NBN于點N,易證△NBC1∽△CBD,可求出BN、NC1的長,則C1的坐標可求出.

1)把A(﹣10),B3,0)兩點代入y=﹣x2+bx+c,

得:,

解得b2,c3,

∴拋物線的函數(shù)表達式為y=﹣x2+2x+3;

2)如圖1,(2)過點PPHx軸于H,PGy軸于G,連接PB

Pm,﹣m2+2m+3),易知C0,3),

OCOB,

∴∠OCB=∠OBC45°,

PCPB

∴∠PBC=∠PCB,

∴∠PCG=∠PBC,

又∵PCPB,

RtPCGRtPBHAAS),

PGPH,

m=﹣m2+2m+3,

解得:m

P為( )或();

3)如圖2,當BC1在直線BD上時,過點O1O1MOB,由y=﹣x2+2x+3可得D1,4).

DC,BC3DB2,

DC2+BC2BD2

∴△BCD為直角三角形,且∠BCD90°,

∵∠DBC+CBO1=∠CBO1+ABO145°,

∴∠ABO1=∠DBC,

∴△MBO1∽△CBD,

,

,

∴點O1的坐標為(),

如圖3,當BO1BD重合時,過點Bx軸的垂線BN,過點C1C1NBN于點N

易證△NBC1∽△CBD,

,

,

,則C1的坐標為().

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知x1x2是一元二次方程(a﹣6x2+2ax+a=0的兩個實數(shù)根.

1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;

2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;

(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)圖象的頂點為(﹣1,1),且與反比例函數(shù)的圖象交于點A(﹣3,﹣3

1)求二次函數(shù)與反比例函數(shù)的解析式;

2)判斷原點(0,0)是否在二次函數(shù)的圖象上,并說明理由;

3)根據(jù)圖象直接寫出二次函數(shù)的值小于反比例函數(shù)的值時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,且AB10,弦MN的長為8,若弦MN的兩端在圓周上滑動,始終與AB相交.記點A,BMN的距離分別為h1,h2,則|h1h2|等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組準備測量長江某處的寬度AB,他們在AB延長線上選擇了一座與B距離為200 m的大樓,在大樓樓頂?shù)挠^測點C處分別觀測點A和點B,利用測角儀測得俯角(從高處觀測低處的目標時,視線與水平線所成的銳角)分別為46°.求該處長江的寬度AB.(參考數(shù)據(jù):sin8°≈0.14cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69tan46°≈1.04

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,過點C作直線CFAD

(問題)如圖,過點D作直線DGAB交直線CF于點E,連結AE,求證:ABDE

(探究)如圖,在線段AD上任取一點P,過點P作直線PGAB交直線CF于點E,連結AEBP,探究四邊形ABPE是哪類特殊四邊形并加以證明.

(應用)在探究的條件下,設PEAC于點M.若點PAD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是正方形ABCDCD上一點,連接AM,作DEAM于點EBFAM于點F,連接BE,若AF1,四邊形ABED的面積為6,則∠EBF的余弦值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設PA=x

1)求證:PFA∽△ABE;

2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

同步練習冊答案