【題目】如圖,的直徑,點(diǎn)的中點(diǎn),的弦,且,垂足為,連接于點(diǎn),連接,

(1)求證:;

(2),求的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2).

【解析】

(1)根據(jù)點(diǎn)的中點(diǎn)和垂徑定理可證CD=BF,再利用即可證得結(jié)論;

(2)解法一:連接,設(shè)的半徑為,由列出關(guān)于的方程就能求解;

解法二:如圖,作輔助線,構(gòu)建角平分線和全等三角形,證明,得,再證明,得,進(jìn)而可得的長(zhǎng),易證,列比例式可求得的長(zhǎng),也就是的長(zhǎng);

解法三:連接,根據(jù)垂徑定理和三角形的中位線定理可得,再證明,然后利用勾股定理即可求出結(jié)果.

證明:(1)的中點(diǎn),∴,

的直徑,且,∴,

,∴,

中,

,

(2)解法一:如圖,連接,設(shè)的半徑為,

中,,即,

中,,即,

,∴,∴

,

解得:()3,

;

解法二:如圖,過(guò)AD延長(zhǎng)線于點(diǎn),連接、

,∴

,∴,

,∴

,

,,

,

,∴,∴,

的直徑,∴,∴,

,∴

,

解法三:如圖,連接,交,

的中點(diǎn),∴,∴,

,∴,

,,,

,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是函數(shù)上兩點(diǎn),為一動(dòng)點(diǎn),作軸,軸,下列說(shuō)法正確的是( )

;③若,則平分;④若,則

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為37°,在乙樓底部B點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,漁船跟蹤魚(yú)群由西向東航行,到達(dá)A處時(shí),測(cè)得小島C位于它的北偏東53°方向,再航行后達(dá)到B處(),測(cè)得小島C位于它的北偏東45°方向.小島C的周?chē)?/span>內(nèi)有暗礁,如果漁船不改變航向繼續(xù)向東航行,請(qǐng)你通過(guò)計(jì)算說(shuō)明漁船有無(wú)觸礁的危險(xiǎn)?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏從地出發(fā)向地行走,同時(shí)小聰從地出發(fā)向地行走,如圖,相交于點(diǎn)的兩條線段分別表示小敏、小聰離地的距離與已用時(shí)間之間的關(guān) 系,則_______時(shí),小敏、小聰兩人相距

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知拋物線y=ax23ax4a(a0)的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對(duì)稱(chēng)軸與x軸的交點(diǎn)為E

(1)拋物線的對(duì)稱(chēng)軸與x軸的交點(diǎn)E坐標(biāo)為_____,點(diǎn)A的坐標(biāo)為_____;

(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;

(3)(2)的條件下,如圖②Q(m0)x的正半軸上一點(diǎn),過(guò)點(diǎn)Qy軸的平行線,與直線BC交于點(diǎn)M,與拋物線交于點(diǎn)N,連結(jié)CN,將△CMN沿CN翻折,M的對(duì)應(yīng)點(diǎn)為M′.在圖中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn)、、.拋物線過(guò)、兩點(diǎn).

1)直接寫(xiě)出點(diǎn)的坐標(biāo),并求出拋物線的解析式;

2)動(dòng)點(diǎn)從點(diǎn)出發(fā).沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒.過(guò)點(diǎn)于點(diǎn)

①過(guò)點(diǎn)于點(diǎn),交拋物線于點(diǎn).當(dāng)為何值時(shí),線段最長(zhǎng)?

②連接.在點(diǎn)、運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大邑縣某汽車(chē)出租公司有若干輛同一型號(hào)的貨車(chē)對(duì)外出租,每輛貨車(chē)的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車(chē)的日租金比淡季上漲25%.據(jù)統(tǒng)計(jì),淡季該公司平均每天有10輛貨車(chē)未出租,日租金總收入為3200元;旺季所有的貨車(chē)每天能全部租出,日租金總收入為6000元.

1)求該出租公司這批對(duì)外出租的貨車(chē)共有多少輛?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車(chē)的日租金每上漲20元,每天租出去的貨車(chē)就會(huì)減少1輛,不考慮其它因素,該出租公司的日租金總收入最高是多少元?當(dāng)日租金總收入最高時(shí),每天出租貨車(chē)多少輛?

查看答案和解析>>

同步練習(xí)冊(cè)答案