【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

【答案】2.4.

【解析】

試題連接CP,利用勾股定理列式求出AB,判斷出四邊形CFPE是矩形,根據(jù)矩形的對角線相等可得EF=CP,再根據(jù)垂線段最短可得CP⊥AB時,線段EF的值最小,然后根據(jù)三角形的面積公式列出方程求解即可.

試題解析:如圖,連接CP

∵∠C=90°,AC=3BC=4,

∴AB=,

∵PE⊥AC,PF⊥BC∠C=90°,

四邊形CFPE是矩形,

∴EF=CP,

由垂線段最短可得CP⊥AB時,線段EF的值最小,

此時,SABC=BCAC=ABCP,

×4×3=×5CP,

解得CP=2.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動﹣旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°,得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓. (Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線段A′B的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在y軸上運動.

(1)求直線AB的函數(shù)解析式;

(2)動點M在y軸上運動,使MA+MB的值最小,求點M的坐標(biāo);

(3)在y軸的負(fù)半軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,AE平分,,交AC延長線于F,且垂足為E,則下列結(jié)論:;;;其中正確的結(jié)論有______填寫序號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D、E分別是BC、AC上的點,BD=CE,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

(Ⅰ)求證:方程有兩個不相等的實數(shù)根;

(Ⅱ)若此方程的一個根是1,請求出方程的另一個根;

()求以()中所得兩根為邊長的等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織同學(xué)到離校15千米的社會實踐基地開展活動.一部分同學(xué)騎自行車前往,另一部分同學(xué)在騎自行車的同學(xué)出發(fā) 小時后,乘汽車沿相同路線行進(jìn),結(jié)果騎自行車的與乘汽車的同學(xué)同時到達(dá)目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在處,折痕為EF,若,則的周長之和為  

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是(
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

同步練習(xí)冊答案