【題目】某校組織同學到離校15千米的社會實踐基地開展活動.一部分同學騎自行車前往,另一部分同學在騎自行車的同學出發(fā) 小時后,乘汽車沿相同路線行進,結果騎自行車的與乘汽車的同學同時到達目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.

【答案】解:設自行車的速度為x千米/小時,則汽車的速度為3x千米/小時, 根據(jù)題意得: = ,
解得:x=15,
經(jīng)檢驗,x=15是原分式方程的解.
答:自行車的速度是15千米/小時.
【解析】設自行車的速度為x千米/小時,則汽車的速度為3x千米/小時,根據(jù)時間=路程÷速度結合騎車和乘騎車兩種交通方式所需時間之間的關系,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論.
【考點精析】通過靈活運用分式方程的應用,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】長城科技公司生產銷售一種電子產品,該產品總成本包括技術成本、制造成本、銷售成本三部分,經(jīng)核算,2014年該產品各部分成本所占比例約為2:a:1.且2014年該產品的技術成本、制造成本分別為400萬元、1400萬元.
(1)確定a的值,并求2014年產品總成本為多少萬元;
(2)為降低總成本,該公司2015年及2016年增加了技術成本投入,確保這兩年技術成本都比前一年增加一個相同的百分數(shù)m(m<50%),制造成本在這兩年里都比前一年減少一個相同的百分數(shù)2m;同時為了擴大銷售量,2016年的銷售成本將在2014年的基礎上提高10%,經(jīng)過以上變革,預計2016年該產品總成本達到2014年該產品總成本的 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù),它的圖象與軸交于點,與軸交于點

的坐標為________,點的坐標為________;

畫出此函數(shù)圖象;

畫出該函數(shù)圖象向下平移個單位長度后得到的圖象;

寫出一次函數(shù)圖象向下平移個單位長度后所得圖象對應的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,P是AD上一動點,O為BD的中點,連接PO并延長,交BC于點Q.

(1) 求證:四邊形PBQD是平行四邊形

(2) 若AD=6cm,AB=4cm, 點P從點A出發(fā),以1cm/s的速度向點D運動(不與點D重合),設點P運動時間為t s , 請用含t的代數(shù)式表示PD的長,并求出當t為何值時,四邊形PBQD是菱形。并求出此時菱形的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,角平分線AD、BE、CF相交于點H,過H點作HGAC,垂足為G,那么∠AHE和∠CHG的大小關系為( 。

A. AHE>∠CHG B. AHE<∠CHG C. AHE=CHG D. 不一定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度: A(1,0)的距離跨度
B(﹣ , )的距離跨度
C(﹣3,﹣2)的距離跨度
②根據(jù)①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(﹣1,0)為圓心,2為半徑的圓,直線y=k(x﹣1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y= x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,直接寫出圓心E的橫坐標xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在長方形ABCD中,AB=10cm,BC=8cm、點PA出發(fā),沿A、B、C、D路線運動,到D停止;點P的速度為每秒1cm,a秒時點P的速度變?yōu)槊棵?/span>bcm,圖②是點P出發(fā)x秒后,APD的面積S1(cm2)與x(秒)的函數(shù)關系圖象

(1)根據(jù)圖②中提供的信息,求a、b及圖②中c的值;

(2)設點P離開點A的路程為y(cm),請寫出動點P改變速度后y與出發(fā)后的運動時間x(秒)的函數(shù)關系式;

(3)點P出發(fā)后幾秒,APD的面積S1是長方形ABCD面積的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于

查看答案和解析>>

同步練習冊答案