【題目】某校對A《唐詩》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開展最受歡迎的傳統(tǒng)文化著作調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

1)求一共調(diào)查了多少名學(xué)生;

2)請將條形統(tǒng)計圖補充完整;

3)該校語文老師想從這四類著作中隨機選取兩類作為學(xué)生寒假必讀書籍,請用樹狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.

【答案】1)本次一共調(diào)查的學(xué)生數(shù)是50人;(2)補圖見解析;(3P(選中BC)=.

【解析】

1)根據(jù)C的人數(shù)以及C的比例即可求出總?cè)藬?shù);

2)根據(jù)(1)中的總?cè)藬?shù)以及ACD中的人數(shù)即可求出B的人數(shù),進(jìn)而補全條形統(tǒng)計圖;

3)先列出所有可能的情況,共12種情況,選AB共有2種,再運用概率公式即可求解.

1)本次一共調(diào)查的學(xué)生數(shù)是:15÷30%50(人);

2B對應(yīng)的人數(shù)為:501615712人,

補圖如下:

3)根據(jù)題意畫樹狀圖如下:

∵共有12種等可能的結(jié)果,恰好選中B、C的有2種,

P(選中BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;

(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,AD1FM于點K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當(dāng)NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為O,A點坐標(biāo)為(40),B點坐標(biāo)為(﹣10),以AB的中點P為圓心,AB為直徑作P的正半軸交于點C

1)求經(jīng)過AB、C三點的拋物線所對應(yīng)的函數(shù)解析式;

2)設(shè)M為(1)中拋物線的頂點,求直線MC對應(yīng)的函數(shù)解析式;

3)試說明直線MCP的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南方旱情嚴(yán)重,乙水庫需每天向外供相同量的水. 3天后,為緩解旱情,北方甲水庫立即以管道運輸?shù)姆绞浇o乙水庫送水,在給乙水庫送水前甲水庫的蓄水量一直為5000m3.由于兩水庫相距較遠(yuǎn),甲水庫的送出的水要5天后才能到達(dá)乙水庫,12天后旱情緩解,乙水庫不再向外供水,甲水庫也停止向乙水庫送水.下圖是甲水庫的蓄水量與乙水庫蓄水量之差y(萬m3)與時間x(天)之間的函數(shù)圖象.則甲水庫每天的送水量為__________m3.(假設(shè)在單位時間內(nèi),甲水庫的放水量與乙水庫的進(jìn)水量相同,水在排放、接收以及輸送過程中的損耗不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進(jìn)行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進(jìn)行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°BCAC,點 D AB 上,DEAB BC E,點 F AE 的中點

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點 B 逆時針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

同步練習(xí)冊答案