【題目】如圖,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,請問在BD上是否存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?若存在,求BP的長;若不存在,請說明理由;
(2)若AB=9,CD=4,BD=12,請問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長;
(3)若AB=9,CD=4,BD=15,請問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長;
(4)若AB=m,CD=n,BD=l,請問m,n,l滿足什么關(guān)系時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)P點(diǎn)?兩個(gè)P點(diǎn)?三個(gè)P點(diǎn)?
【答案】解:(1)存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
理由是:設(shè)BP=x,
∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°。
∴當(dāng)或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
①若,則,解得:x=。
②若,則,即x2﹣10x+36=0,△=(﹣10)2﹣4×1×36<0,此方程無解。
∴存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,此時(shí)BP的值為。
(2)在BD上存在2個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,
理由是:設(shè)BP=x,
∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°。
∴當(dāng)或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
①若,則,解得:x=。
②若,則,即x2﹣12x+36=0,解得:x1=x2=6。
∴存在2個(gè)點(diǎn)P,使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,此時(shí)BP的值為或6。
(3)在BD上存在3個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
理由是:設(shè)BP=x,
∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°。
∴當(dāng)或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
①若,則,解得:x=。
②若,則,即x2﹣15x+36=0,解得:x1=3,x2=12。
∴存在3個(gè)點(diǎn)P ,使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,此時(shí)BP的值為或3或12。
(4)設(shè)BP=x,
∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°。
∴當(dāng)或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似。
①若,則,解得:x=。
②若,則,即x2﹣lx+mn=0。
∵△=(﹣l)2﹣4×1×mn=l2﹣4mn,
∴當(dāng)l2﹣4mn<0時(shí),方程沒有實(shí)數(shù)根;當(dāng)l2﹣4mn=0時(shí),方程有2個(gè)相等的實(shí)數(shù)根;當(dāng)l2﹣4mn>0時(shí),方程有2個(gè)不相等的實(shí)數(shù)根。
∴當(dāng)l2﹣4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)P點(diǎn);
當(dāng)l2﹣4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)P點(diǎn);
當(dāng)l2﹣4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)P點(diǎn)。
【解析】
(1)存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,設(shè)BP=x,根據(jù)∠B=∠D=90°和相似三角形的判定得出或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,代入求出即可。
(2)存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,設(shè)BP=x,根據(jù)∠B=∠D=90°和相似三角形的判定得出或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,代入求出即可。
(3)存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,設(shè)BP=x,根據(jù)∠B=∠D=90°和相似三角形的判定得出或時(shí),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,代入求出即可。
(4)存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,設(shè)BP=x,根據(jù)∠B=∠D=90°和相似三角形的判定得出當(dāng)或時(shí)使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似,代入后根據(jù)根的判別式進(jìn)行判斷即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是射線BC上一點(diǎn)(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)若∠BAC=90°.
①如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),∠BCE= °;
②當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖2,①中的結(jié)論是否仍然成立?請說明理由;
(2)若∠BAC=75°,點(diǎn)D在射線BC上,∠BCE= °;
(3)若點(diǎn)D在直線BC上移動,其他條件不變.設(shè)∠BAC=α,∠BCE=β,α與β有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足+|b-6|=0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O-C-B-A-O的線路移動.
(1)a=______________,b=_____________,點(diǎn)B的坐標(biāo)為_______________;
(2)當(dāng)點(diǎn)P移動4秒時(shí),請指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);
(3)在移動過程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長度時(shí),求點(diǎn)P移動的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,﹣2),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求線段PE的長(用含x 的代數(shù)式表示);
(3)點(diǎn)D為直線AB與這個(gè)二次函數(shù)圖象對稱軸的交點(diǎn),若以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似,請求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家體育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定價(jià)5元,乒乓球拍每副定價(jià)20元.現(xiàn)兩家商店都搞促銷活動,甲店每買一副球拍贈一盒乒乓球;乙店按九折優(yōu)惠.某班級需購球拍4副,乒乓球x盒(x≥4).
(1)若在甲店購買付款(元),在乙店購買付款(元),分別寫出與x的函數(shù)關(guān)系式;
(2)買30盒乒乓球時(shí),在哪家商店購買合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時(shí)出發(fā)相向而行,其中甲到達(dá)B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.
(1)求甲車離A地的距離y甲(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若它們出發(fā)第5小時(shí)時(shí),離各自出發(fā)地的距離相等,求乙車離A地的距離y乙(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)B、C的坐標(biāo)分別為(﹣2,0),(﹣1,2).
(1)請?jiān)谌鐖D所示的網(wǎng)格中根據(jù)上述點(diǎn)的坐標(biāo)建立對應(yīng)的直角坐標(biāo)系;(只要畫圖,不需要說明)
(2)在(1)中建立的平面直角坐標(biāo)系中,先畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于x軸對稱的圖形△A2B2C2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com