【題目】甲、乙兩家體育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定價(jià)5元,乒乓球拍每副定價(jià)20元.現(xiàn)兩家商店都搞促銷活動(dòng),甲店每買一副球拍贈(zèng)一盒乒乓球;乙店按九折優(yōu)惠.某班級(jí)需購球拍4副,乒乓球x盒(x≥4).

1)若在甲店購買付款(元),在乙店購買付款(元),分別寫出與x的函數(shù)關(guān)系式;

2)買30盒乒乓球時(shí),在哪家商店購買合算?

【答案】1;(2)乙.

【解析】

試題(1)在甲店購買的付款數(shù)=4份球拍的總價(jià)+x﹣4)盒球的總價(jià),在乙店購買的付款數(shù)=4份球拍的總價(jià)×0.9+x盒球的總價(jià)×0.9,把相關(guān)數(shù)值代入化簡(jiǎn)即可;

2)令x=30,分別代入兩個(gè)表達(dá)式,計(jì)算后比較即可得到答案.

試題解析:(1,

2)當(dāng)x=30時(shí),,,在乙商店購買合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,﹣2)B(2,0).

(1)試確定C點(diǎn)坐標(biāo),使△ABC關(guān)于x軸成軸對(duì)稱,并連接AC,BC.

(2)先作出△ABC關(guān)于y軸的對(duì)稱圖形△A'B'C'(不寫作法),再寫出A'B',C′三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,按以下步驟作圖:分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,弧線兩兩交于M、N兩點(diǎn),作直線MN,與邊AC、BC分別交于DE兩點(diǎn),連接BDAE,若BAC=90°,在下列說法中:

EABC外接圓的圓心;

②圖中有4個(gè)等腰三角形;

ABE是等邊三角形;

④當(dāng)C=30°時(shí),BD垂直且平分AE

其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥BD,CD⊥BD

1)若AB=9CD=4,BD=10,請(qǐng)問在BD上是否存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?若存在,求BP的長(zhǎng);若不存在,請(qǐng)說明理由;

2)若AB=9CD=4,BD=12,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、AB三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);

3)若AB=9,CD=4,BD=15,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);

4)若AB=mCD=n,BD=l,請(qǐng)問m,nl滿足什么關(guān)系時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)P點(diǎn)??jī)蓚(gè)P點(diǎn)?三個(gè)P點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小龍?jiān)谌kS機(jī)抽取了一部分同學(xué)就“我最喜愛的體育項(xiàng)目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項(xiàng)).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)求“其他”部分對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OAOB,C是半徑OB上的一動(dòng)點(diǎn),連接AC并延長(zhǎng)交⊙OD,過點(diǎn)D作直線交OB延長(zhǎng)線于E,且DE=CE,已知OA=8.

(1)求證:ED是⊙O的切線;

(2)當(dāng)∠A=30°時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;

(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案