一個假分?jǐn)?shù)的值等于3,在它的分子里減去4,在它的分母里加上4,就變成一個真分?jǐn)?shù),求原來的假分?jǐn)?shù)(這個假分?jǐn)?shù)和后來的真分?jǐn)?shù)的分子和分母都是正整數(shù)).

答案:
解析:

  

  分析:由定義可知,真分?jǐn)?shù)小于1,而假分?jǐn)?shù)大于1,假分?jǐn)?shù)的值是3,那么可設(shè)分母是x,則分子為3x.


提示:

真分?jǐn)?shù)和假分?jǐn)?shù)這兩個概念是在正數(shù)的范圍內(nèi)規(guī)定的,所以應(yīng)有這一條件.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
;
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值;
(3)求函數(shù)y=
2x2-1
x+1
圖象上所有橫縱坐標(biāo)均為整數(shù)的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 七年級數(shù)學(xué)下冊 人教版 人教版 題型:044

一個假分?jǐn)?shù)的值等于3,在它的分子里減去4,在它的分母里加上4,就變成一個真分?jǐn)?shù),求原來的假分?jǐn)?shù)(這個假分?jǐn)?shù)和后來的真分?jǐn)?shù)的分子和分母都是正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值;
(3)求函數(shù)y=
2x2-1
x+1
圖象上所有橫縱坐標(biāo)均為整數(shù)的點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案