如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),E、F、G、H分別是OA、OB、OC、OD上的點(diǎn),且AE=BF=CG=DH.
(1)求證:四邊形EFGH是矩形;
(2)若E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),且DG⊥AC,OF=2cm,求矩形ABCD的面積.

【答案】分析:(1)首先證明四邊形EFGH是平行四邊形,然后再證明HF=EG;
(2)根據(jù)題干求出矩形的邊長(zhǎng)CD和BC,然后根據(jù)矩形面積公式求得.
解答:(1)證明:∵四邊形ABCD是矩形,
∴OA=0B=OC=OD,
∵AE=BF=CG=DH,
∴AO-AE=OB-BF=CO-CG=DO-DH,
即:OE=OF=OG=OH,
∴四邊形EFGH是矩形;

(2)解:∵G是OC的中點(diǎn),
∴GO=GC,
∵DG⊥AC,
∴∠DGO=∠DGC=90°,
又∵DG=DG,
∴△DGC≌△DGO,
∴CD=OD,
∵F是BO中點(diǎn),OF=2cm,
∴BO=4cm,
∵四邊形ABCD是矩形,
∴DO=BO=4cm,
∴DC=4cm,DB=8cm,
∴CB==4
∴矩形ABCD的面積=4×4=16cm2
點(diǎn)評(píng):本題主要考查矩形的判定,首先要判定四邊形是平行四邊形,然后證明對(duì)角線相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

請(qǐng)看下面小明同學(xué)完成的一道證明題的思路:如圖1,已知△ABC中,AB=AC,CD⊥AB,垂足是D,P是BC邊上任意一點(diǎn),PE⊥AB,PF⊥AC,垂足分別是E、F.
求證:PE+PF=CD.
證明思路:
如圖2,過點(diǎn)P作PG∥AB交CD于G,則四邊形PGDE為矩形,PE=GD;又可證△PGC≌△CFP,則PF=CG;所以PE+PF=DG+GC=DC.若P是BC延長(zhǎng)線上任意一點(diǎn),其它條件不變,則PE、PF與CD有何關(guān)系?請(qǐng)你寫出結(jié)論并完成證明過程.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計(jì)劃拼出以下四個(gè)圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個(gè)角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,矩形DEFG的邊EF在△ABC的邊BC上,頂點(diǎn)D、G分別在邊AB、AC上,AH為BC邊上的高,AH交DG于點(diǎn)P,已知AH=3,BC=5;
(1)設(shè)DG的長(zhǎng)為x,矩形DEFG面積為y,求y關(guān)于x的函數(shù)解析式及其定義域;
(2)根據(jù)(1)中所得y關(guān)于x的函數(shù)圖象,求當(dāng)矩形DEFG面積最大時(shí),DG的長(zhǎng)為多少?矩形DEFG面積是多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初二數(shù)學(xué) 華東師大(新課標(biāo)2001-3年初審) 華東師大(新課標(biāo)2001-3年初審) 題型:044

如圖,BO是Rt△ABC斜邊上的中線,延長(zhǎng)BO至點(diǎn)D,使DO=BO,連結(jié)AD,CD,則四邊形ABCD是矩形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東揭陽(yáng)揭西張武幫中學(xué)九年級(jí)上質(zhì)檢考試數(shù)學(xué)試卷B(解析版) 題型:選擇題

如圖,AC.BD是矩形ABCD的對(duì)角線,過點(diǎn)D作DF∥AC交BC的延長(zhǎng)線于F,則圖中與△ABC全等的三角形共有(    。

A.4個(gè)  B.3個(gè)  C.2個(gè)    D.1個(gè)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案