如圖,在△ABC中,點(diǎn)O是AC邊上的一動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)MN//BC,MN交∠BCA的平分線(xiàn)于點(diǎn)E,交∠BCA的外角平分線(xiàn)于點(diǎn)F。

(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?證明你的結(jié)論;
(3)說(shuō)明,當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),且△ABC具備什么條件時(shí),四邊形AECF是正方形(不證明)
(1)由已知MN∥BC,CE、CF分別平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO;(2)當(dāng)點(diǎn)O在AC的中點(diǎn)時(shí);(3)當(dāng)點(diǎn)O在AC的中點(diǎn),且∠ACB=90°時(shí)

試題分析:(1)由已知MN∥BC,CE、CF分別平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO;
(2)由(1)得出的EO=CO=FO,點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),則由EO=CO=FO=AO,所以這時(shí)四邊形AECF是矩形;
(3)由已知和(2)得到的結(jié)論,點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),且△ABC滿(mǎn)足∠ACB為直角的直角三角形時(shí),則推出四邊形AECF是矩形且對(duì)角線(xiàn)垂直,所以四邊形AECF是正方形.
(1)∵M(jìn)N∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,F(xiàn)O=CO,
∴EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形.
∵當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),AO=CO,
又∵EO=FO,
∴四邊形AECF是平行四邊形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四邊形AECF是矩形;
(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),且△ABC滿(mǎn)足∠ACB為直角的直角三角形時(shí),四邊形AECF是正方形.
∵由(2)知,當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形,
已知MN∥BC,當(dāng)∠ACB=90°,則
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四邊形AECF是正方形.
點(diǎn)評(píng):解答本題的關(guān)鍵是由已知得出EO=FO,然后根據(jù)(1)的結(jié)論確定(2)(3)的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題7分) 如圖,四邊形ABCD中,ADBC,AEADBD于點(diǎn)E,CFBCBD于點(diǎn)F,且AE =CF

求證:(1)△ADE ≌△CBF;
(2)AB=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四邊形中,對(duì)角線(xiàn)不互相平分的是(    ).
A.平行四邊形B.菱形C.正方形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在□ABCD中,∠A、∠B的度數(shù)之比為5∶4,則∠C等于(    )

A.60°   B.80°   C.100°    D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四邊形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,點(diǎn)P是在線(xiàn)段BC上任意一點(diǎn)(與點(diǎn)B不重合),∠BPE=∠BCA,PE交BO于點(diǎn)E,過(guò)點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
      
⑴ 若ABCD為正方形,
① 如圖⑴,當(dāng)點(diǎn)P與點(diǎn)C重合時(shí).△BOG是否可由△POE通過(guò)某種圖形變換得到?證明你的結(jié)論;
② 結(jié)合圖⑵求的值;
⑵ 如圖⑶,若ABCD為菱形,記∠BCA=,請(qǐng)?zhí)骄坎⒅苯訉?xiě)出的值.(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知直角梯形的一條對(duì)角線(xiàn)把梯形分為一個(gè)直角三角形和一個(gè)邊長(zhǎng)為8cm的等邊三角形,則梯形的中位線(xiàn)長(zhǎng)為(    )
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形的面積為24,一條對(duì)角線(xiàn)長(zhǎng)為6,則其周長(zhǎng)等于         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,試求此等腰梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分10分)
已知:如圖,在平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,點(diǎn)M、N分別在邊AO和邊OD上,且AM=AO,ON=OD,設(shè),試用的線(xiàn)性組合表示向量和向量

查看答案和解析>>

同步練習(xí)冊(cè)答案