如圖,已知直角梯形的一條對(duì)角線把梯形分為一個(gè)直角三角形和一個(gè)邊長(zhǎng)為8cm的等邊三角形,則梯形的中位線長(zhǎng)為(    )
A.4cmB.6cmC.8cmD.10cm
B

試題分析:根據(jù)直角梯形、等邊三角形的性質(zhì),可得∠ABD=30°,再根據(jù)含30°角的直角三角形的性質(zhì)及梯形的中位線定理即可求得結(jié)果.
由題意得∠ABD=30°,BD=BC=8cm,則AD=4cm
所以梯形的中位線長(zhǎng)
故選B.
點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握含30°角的直角三角形的性質(zhì):30°角所對(duì)的直角邊等于斜邊的一半;梯形的中位線等于上下底和的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形中,,,,
 =,點(diǎn)上,=4.

(1)線段=      
(2)試判斷△的形狀,并說明理由;
(3)現(xiàn)有一動(dòng)點(diǎn)在線段上從點(diǎn)開始以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)移動(dòng),設(shè)移動(dòng)時(shí)間為秒(>0).問是否存在的值使得△為直角三角形?若存在直接寫出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是一塊草坪,量得四邊長(zhǎng)AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是菱形ABCD對(duì)角線BD上一點(diǎn),PE⊥AB于點(diǎn)E,PE=4 cm,則點(diǎn)P到BC的距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(9分)在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)Cx軸正半軸上一點(diǎn),連結(jié)BC,過點(diǎn)C作直線CPy軸.

(1)若含45°角的直角三角形如圖所示放置.其中,一個(gè)頂點(diǎn)與點(diǎn)O重合,直角頂點(diǎn)D在線段BC上,另一個(gè)頂點(diǎn)ECP上.求點(diǎn)C的坐標(biāo);
(2)若含30°角的直角三角形一個(gè)頂點(diǎn)與點(diǎn)O重合,直角頂點(diǎn)D在線段BC上,另一個(gè)頂點(diǎn)ECP上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上的一動(dòng)點(diǎn),過點(diǎn)O作直線MN//BC,MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F。

(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?證明你的結(jié)論;
(3)說明,當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),且△ABC具備什么條件時(shí),四邊形AECF是正方形(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,E、F是□ABCD對(duì)角線AC上不重合的兩點(diǎn). 請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使四邊形DEBF是平行四邊形.添加的條件可以是          .(只需填寫一個(gè)正確的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形ABCD中,EDC邊上的點(diǎn),連接BE,將ΔBCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到ΔDCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為
A.10°B.15°
C.20°D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖四邊形中,點(diǎn)E、F、G、H分別是AD、BC、BD、AC的中點(diǎn),當(dāng)四邊形ABCD滿足條件__  _時(shí),四邊形EGFH是菱形.(填一個(gè)使結(jié)論成立的條件)

查看答案和解析>>

同步練習(xí)冊(cè)答案