【題目】如圖,在矩形中,,P是矩形內(nèi)一點(diǎn),沿、、把這個(gè)矩形剪開,然后把兩個(gè)陰影三角形拼成一個(gè)四邊形,則這個(gè)四邊形的面積為_________;這個(gè)四邊形周長(zhǎng)的最小值為________.

【答案】30 26

【解析】

過點(diǎn)P于點(diǎn)E,延長(zhǎng)于點(diǎn)F,證得四邊形是矩形,得到,再利用面積相加得到陰影面積即可;利用勾股定理求得對(duì)角線AC的長(zhǎng),由得到當(dāng)點(diǎn)P是對(duì)角線、的交點(diǎn)時(shí),四邊形的周長(zhǎng)有最小值,即可計(jì)算四邊形周長(zhǎng)最小值.

如解圖①,過點(diǎn)P于點(diǎn)E,延長(zhǎng)于點(diǎn)F,

∵四邊形是矩形,

,.

∴四邊形是矩形.

.

又∵,

;

如解圖②,連接,交于點(diǎn)

,

.

,

∴當(dāng)點(diǎn)P是對(duì)角線、的交點(diǎn)時(shí),四邊形的周長(zhǎng)有最小值.

∴四邊形周長(zhǎng)的最小值為.

故答案為:30,26.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.已知⊙Mx軸交于AB兩點(diǎn),與y軸交于CD兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別為﹣17,弦AB的弦心距MN3,

1)求⊙M的半徑;

2)如圖2,P在弦CD上,且CP2,Q是弧BC上一動(dòng)點(diǎn),PQ交直徑CF于點(diǎn)E,當(dāng)∠CPQ=∠CQD時(shí),

①判斷線段PQ與直徑CF的位置關(guān)系,并說明理由;

②求CQ的長(zhǎng);

3)如圖3.若P點(diǎn)是弦CD上一動(dòng)點(diǎn),Q是弧BC上一動(dòng)點(diǎn),PQ交直徑CF于點(diǎn)E,當(dāng)∠CPQ與∠CQD互余時(shí),求△PEM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校同安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有    人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為    度;并補(bǔ)全條形統(tǒng)計(jì)圖.

2)若該中學(xué)共有學(xué)生人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為    人;

3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的個(gè)女生個(gè)男生中分別隨機(jī)抽取人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAC=BDC,

1)求證:△ADE∽△CEB;

2)已知△ABC是等邊三角形,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為1的正方形ABCD中,動(dòng)點(diǎn)E,F分別在邊ABCD上,將正方形ABCD沿直線EF折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)M始終落在邊AD(點(diǎn)M不與點(diǎn)A,D重合),點(diǎn)C落在點(diǎn)N處,MNCD交于點(diǎn)P,設(shè)BEx

(1)當(dāng)AM時(shí),求x的值;

(2)如圖2,連接BM、過B點(diǎn)作BH⊥MN,垂足為H,求證:BM∠ABH的角平分線;

(3)隨著點(diǎn)M在邊AD上位置的變化,△PDM的周長(zhǎng)是否發(fā)生變化?如變化,請(qǐng)說明理由;如不變,請(qǐng)求出該定值;

(4)設(shè)四邊形BEFC的面積為S,求Sx之間的函數(shù)表達(dá)式,并求出S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在扇形中,,半徑,點(diǎn)P上任一點(diǎn)(不與A、O重合).

1)如圖①,Q上一點(diǎn),若,求證:.

2)如圖②,將扇形沿折疊,得到O的對(duì)稱點(diǎn).

①若點(diǎn)落在上,求的長(zhǎng);

②當(dāng)與扇形所在的圓相切時(shí),求折痕的長(zhǎng).(注:本題結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場(chǎng)部分平面圖如圖所示C,E,A在同一直線上,D,EB在同一直線上,測(cè)得A處與E處的距離為80 mC處與D處的距離為34 m,C90°,ABE90°,BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

如圖1,ACBDCE均為等邊三角形,點(diǎn)A、DE在同一直線上,連接BE

1)證明:AD=BE

2)求∠AEB的度數(shù).

問題變式:

3)如圖2,ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)AD、E在同一直線上,CMDCEDE邊上的高,連接BE.()請(qǐng)求出∠AEB的度數(shù);()判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A0,1),它的頂點(diǎn)為B13).

1)求這個(gè)二次函數(shù)的表達(dá)式;

2)過點(diǎn)AACAB交拋物線于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一點(diǎn),當(dāng)△APC面積最大時(shí),求點(diǎn)P的坐標(biāo)和△APC的面積最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案