【題目】已知,是直線上的點(diǎn),.
()如圖,過(guò)點(diǎn)作,并截取,連接、、,判斷的形狀并證明.
()如圖,是直線上的一點(diǎn),直線、相交于點(diǎn),且,求證.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】試題分析:(1)利用SAS證明≌,利用全等三角形的性質(zhì)得出,即可判斷三角形的形狀;
(2)過(guò)點(diǎn)作,使,連接、,就可以得出≌,就有,,就可以得出為等腰直角三角形,就有,就有∥,進(jìn)而得到∥ 就可以得出四邊形是平行四邊形,就有.
試題解析:()是等腰直角三角形,
證明:∵,,
∴,
∵,,
∴≌,
∴,,
∵,
∴,
即,
∴是等腰直角三角形.
()證明:過(guò)點(diǎn)作,使,連接、,
∵,,
∴,
∵,,
∴≌,
∴,,
∵,
∴,即,
∴是等腰直角三角形,
∴,
∴∥,
∵,,
∴∥
∴四邊形是平行四邊形,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是( )
A.等邊三角形B.平行四邊形C.正五邊形D.圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAC=40°,把△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使得點(diǎn)B與CA的延長(zhǎng)線上的點(diǎn)D重合,連接CE.
(1)△ABC旋轉(zhuǎn)了多少度?
(2)連接CE,試判斷△AEC的形狀.
(3)若∠ACE=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用分解因式法解方程:
(1)4x2-12x=0;(2)25x2-9=0;(3)3y2-5y=0;(4);
(5)4(x+3)2-(x-2)2=0 ;(6)4y2+12y+9=0;(7);
(8)4(x-3) 2-x(x-3)=0;(9)(x-3)2-2(x-3)+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你利用上述方法求出△ABC的面積.
(2)在圖2中畫(huà)△DEF,DE、EF、DF三邊的長(zhǎng)分別為、、
①判斷三角形的形狀,說(shuō)明理由.
②求這個(gè)三角形的面積.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地校參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問(wèn)題:
(1)用含x的式子填寫(xiě)下表:
(2)若要保證租車費(fèi)用不超過(guò)1900元,求x的最大值;
(3)在(2)的條件下,若七年級(jí)師生共有195人,寫(xiě)出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)-23+ (2018+3)0-; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的直角坐標(biāo)系中,解答下列問(wèn)題:
(1)分別寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)將△ABC向左平移3個(gè)單位長(zhǎng)度,再向上平移5個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A1B1C1;
(3)求 △A1B1C1的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com