如圖,AD∥BC,∠A=90°,E是AB上的一點,且AD=BE,∠1=∠2.
(1)Rt△ADE與Rt△BEC全等嗎?請寫出必要的推理過程;
(2)△CED是不是直角三角形?請說明理由;
(3)若已知AD=6,AB=14,請求出請求出△CED的面積.
分析:(1)由∠1=∠2,可得DE=CD,根據(jù)證明直角三角形全等的“HL”定理,證明即可;
(2)根據(jù)題意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED=∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可證得∠DEC=90°,即可得出;
(3)由(1)可得BE=AD,所以可求出AE,根據(jù)勾股定理可求出DE,再由已知∠1=∠2和(2)可知)△CED是等腰直角三角形,從而求出△CED的面積.
解答:解:(1)Rt△ADE≌Rt△BEC;
理由如下:
∵∠1=∠2,
∴DE=CE,又∠A=∠B=90°,AE=BC
∴在Rt△ADE和Rt△BEC中,
DE=CE、AE=BC,
∴Rt△ADE≌Rt△BEC;

(2))△CDE是直角三角形;
理由如下:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,∠ADE=∠BEC,
又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,
∴2(∠AED+∠BEC)=180°,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△CDE是直角三角形;

(3)已知AD=BE=6,
∴AE=AB-BE=AB-AD=14-6=8,
在Rt△ADE中,
DE=
AE2+AD2
=
82+62
=10,
又∠1=∠2,
∴DE=CE=10,
再由(2)得:
△CED的面積為:
1
2
DE•CE=
1
2
×10×10=50.
所以△CED的面積為:50.
點評:本題主要考查了全等三角形的判定與性質(zhì)、直角三角形的判定及求直角三角形的面積,證明三角形全等時,關(guān)鍵是根據(jù)題意選取適當(dāng)?shù)臈l件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,AD∥BC,則下列式子成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖:AD∥BC,AB=AC,∠BAC=80°,則∠DAC=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,AD⊥BC,DE∥AB,則∠CDE與∠BAD的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,AD=BC,要得到△ABD≌△CDB,可以添加角的條件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD⊥BC,EF⊥BC,∠1=∠2.求證:AB∥GF.

查看答案和解析>>

同步練習(xí)冊答案