【題目】如圖,已知RtABC的直角邊ACRtDEF的直角邊DF在同一條直線上,且AC=60cm,BC=45cm,DF=6cm,EF=8cm.現(xiàn)將點(diǎn)C與點(diǎn)F重合,再以4cm/s的速度沿

CA方向移動(dòng)△DEF;同時(shí),點(diǎn)P從點(diǎn)A出發(fā),以5cm/s的速度沿AB方向移動(dòng).設(shè)移動(dòng)時(shí)間為ts),以點(diǎn)P為圓心,3tcm)長(zhǎng)為半徑的⊙P與直線AB相交于點(diǎn)M,N,當(dāng)點(diǎn)F與點(diǎn)A重合時(shí),△DEF與點(diǎn)P同時(shí)停止移動(dòng),在移動(dòng)過(guò)程中:

1)連接ME,當(dāng)MEAC時(shí),t=________s

2)連接NF,當(dāng)NF平分DE時(shí),求t的值;

3)是否存在⊙PRtDEF的兩條直角邊所在的直線同時(shí)相切的時(shí)刻?若存在,求出t的值;若不存在,說(shuō)明理由.

【答案】

【解析】試題分析:1)作,垂足為,作 垂足為.首先可求得的正弦和余弦值,在中可求得的長(zhǎng),然后再求得的長(zhǎng),接下來(lái),再求得的長(zhǎng),最后依據(jù)列方程求解即可;
2)連結(jié)NFDE與點(diǎn)G,則GDE的中點(diǎn).先證明從而可證明 然后再證明是直角三角形,然后利用銳角三角函數(shù)的定義可求得AF的長(zhǎng),然后依據(jù)列方程求解即可;
3)如圖3所示:過(guò)點(diǎn)P,垂足為H,當(dāng)EF相切時(shí),且點(diǎn)為G,連結(jié)PG.先證明,然后可得到 然后依據(jù)列方程求解即可;如圖4所示:連接GP,過(guò)點(diǎn)P 垂足為H.先證明,然后可得到 然后依據(jù)列方程求解即可.

試題解析:(1)如圖1所示:作MHAC,垂足為H,作OGAC,垂足為G.

∵在RtABC中,AC=60BC=45,

AB=75cm.

AM=5t3t=2t.

當(dāng)MEAC時(shí),MH=EF, 解得

故答案為:

(2)如圖2所示:連結(jié)NFDE與點(diǎn)G,則GDE的中點(diǎn),

AC=60cmBC=45cm,DF=6cmEF=8cm,

∴△EDF∽△ABC.

∴∠A=E.

EDE的中點(diǎn),

∴∠DFD=GDF.

又∵FC=4t,

10t+4t=60,解得

(3)如圖3所示:過(guò)點(diǎn)PPHAC,垂足為H,當(dāng)⊙PEF相切時(shí),且點(diǎn)為G,連結(jié)PG.

EF是⊙P的切線,

∴四邊形PGFH為矩形,

PG=HF.

∵⊙P的半徑為3t,

PH=3t.

∴⊙PAC相切,

EF為⊙P的切線,

PGEF.

HF=PG=3t.

AH=45AP=4tFC=4t,

4t+3t+4t=60,解得

如圖4所示:連接GP,過(guò)點(diǎn)PPHAC,垂足為H.

由題意得可知:AH=4tCF=4t.

EF是⊙P的切線,

∴四邊形PGFH為矩形,

PG=HF.

GP=FH,

FH=3t.

4t+4t3t=60,解得:t=12.

綜上所述,當(dāng)t的值為12時(shí),⊙PRtDEF的兩條直角邊所在的直線同時(shí)相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校八年級(jí)有800名學(xué)生,在體育中考前進(jìn)行一次排球模擬測(cè)試,從中隨機(jī)抽取部分學(xué)生,根據(jù)其測(cè)試成績(jī)制作了下面兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)本次抽取到的學(xué)生人數(shù)為________,圖2的值為_________

2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是__________,眾數(shù)是________,中位數(shù)是_________

3)根據(jù)樣本數(shù)據(jù),估計(jì)我校八年級(jí)模擬體測(cè)中得12分的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個(gè)圖形有6個(gè)小圓,第2個(gè)圖形有10個(gè)小圓,第3個(gè)圖形有16個(gè)小圓,第4個(gè)圖形有24個(gè)小圓,則第n個(gè)圖形有__個(gè)小圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年共有萬(wàn)名考生參加中考,為了了解這萬(wàn)名考生的數(shù)學(xué)成績(jī),從中抽取了名考生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,以下說(shuō)法正確的有( )

①這種調(diào)查采用了抽樣調(diào)查的方式;②這種調(diào)查采用了全面調(diào)查的方式;是樣本容量;④每名考生的數(shù)學(xué)成績(jī)是個(gè)體

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌

粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí)每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒

1試求出每天的銷售量y與每盒售價(jià)之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(rùn)最大?最大利潤(rùn)是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中, 為對(duì)角線, 的交點(diǎn),經(jīng)過(guò)點(diǎn)和點(diǎn)作⊙,分別交 于點(diǎn), .已知正方形邊長(zhǎng)為的半徑為,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線x軸于點(diǎn)A,交直線于點(diǎn)B2,m).矩形CDEF的邊DCx軸上,DC的左側(cè),EFx軸的上方,DC=2,DE=4.當(dāng)點(diǎn)C的坐標(biāo)為(-20)時(shí),矩形CDEF開(kāi)始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.(注:矩形就是長(zhǎng)方形)

1)求b、m的值;

2)當(dāng)矩形CDEF運(yùn)動(dòng)t秒時(shí),請(qǐng)直接寫(xiě)出CD兩點(diǎn)的坐標(biāo)(用含t的代數(shù)式表示)

3)當(dāng)點(diǎn)B在矩形CDEF的一邊上時(shí),求t的值;

4)設(shè)CFDE分別交折線OBAM、N兩點(diǎn),當(dāng)四邊形MCDN為直角梯形時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空完成推理過(guò)程:

如圖,∠1=2,∠A=D, 求證:∠B=C.

證明:∵∠1=2(已知),

1=3 ),

∴∠2=3(等量代換).

AF________ .

∴∠D=4(兩直線平行,同位角相等 .

∵∠A=D(已知),

∴∠A=4(等量代換).

ABCD(內(nèi)錯(cuò)角相等,兩直線平行).

∴∠B=C .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從平行四邊形的一銳角頂點(diǎn)引另外兩條邊的垂線,若兩垂線的夾角為135°,則此四邊形的四個(gè)內(nèi)角依次為( 。

A.45°,135°,45°,135°B.50°,135°,50°,135°

C.45°,45°,135°,135°D.以上答案都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案