【題目】如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點E、F,點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.

(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣
①求KD的長度;
②如圖2,點P是線段KD上的動點(不與點D、K重合),PM∥DG交KG于點M,PN∥KG交DG于點N,設PD=m,當SPMN= 時,求m的值.

【答案】
(1)

證明:①∵在矩形ABCD中,AD∥BC

∴∠KDO=∠GBO,∠DKO=∠BGO

∵點O是BD的中點

∴DO=BO

∴△DOK≌△BOG(AAS)

②∵四邊形ABCD是矩形

∴∠BAD=∠ABC=90°,AD∥BC

又∵AF平分∠BAD

∴∠BAF=∠BFA=45°

∴AB=BF

∵OK∥AF,AK∥FG

∴四邊形AFGK是平行四邊形

∴AK=FG

∵BG=BF+FG

∴BG=AB+AK


(2)

解:①由(1)得,四邊形AFGK是平行四邊形

∴AK=FG,AF=KG

又∵△DOK≌△BOG,且KD=KG

∴AF=KG=KD=BG

設AB=a,則AF=KG=KD=BG= a

∴AK=4﹣ a,F(xiàn)G=BG﹣BF= a﹣a

∴4﹣ a= a﹣a

解得a=

∴KD= a=2

②過點G作GI⊥KD于點I

由(2)①可知KD=AF=2

∴GI=AB=

∴SDKG= ×2× =

∵PD=m

∴PK=2﹣m

∵PM∥DG,PN∥KG

∴四邊形PMGN是平行四邊形,△DKG∽△PKM∽△DPN

,即SDPN=( 2

同理SPKM=( 2

∵SPMN=

∴S平行四邊形PMGN=2SPMN=2×

又∵S平行四邊形PMGN=SDKG﹣SDPN﹣SPKM

∴2× = ﹣( 2 ﹣( 2 ,即m2﹣2m+1=0

解得m1=m2=1

∴當SPMN= 時,m的值為1


【解析】(1)①先根據(jù)AAS判定△DOK≌△BOG,②再根據(jù)等腰三角形ABF和平行四邊形AFKG的性質,得出結論BG=AB+AK;(2)①先根據(jù)等量代換得出AF=KG=KD=BG,再設AB=a,根據(jù)AK=FG列出關于a的方程,求得a的值,進而計算KD的長;②先過點G作GI⊥KD,求得SDKG的值,再根據(jù)四邊形PMGN是平行四邊形,以及△DKG∽△PKM∽△DPN,求得SDPN和SPKM的表達式,最后根據(jù)等量關系S平行四邊形PMGN=SDKG﹣SDPN﹣SPKM , 列出關于m的方程,求得m的值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結論: ①二次三項式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個數(shù)有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點B,與直線y=kx+b交于點A,直線x=3與x軸交于點C,與直線y=kx+b交于點D.
(1)若點A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設直線y=kx+b與x軸交于點E與y軸交于點F,當 = 且△OFE的面積等于 時,求這個一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點A在點B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里.

(1)求出此時點A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛去,當?shù)竭_點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D,E分別是△ABC的邊AB,AC上的中點,如果△ADE的周長是6,則△ABC的周長是(
A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線c1的頂點為A(﹣1,4),與y軸的交點為D(0,3).

(1)求c1的解析式;
(2)若直線l1:y=x+m與c1僅有唯一的交點,求m的值;
(3)若拋物線c1關于y軸對稱的拋物線記作c2 , 平行于x軸的直線記作l2:y=n.試結合圖形回答:當n為何值時,l2與c1和c2共有:①兩個交點;②三個交點;③四個交點;
(4)若c2與x軸正半軸交點記作B,試在x軸上求點P,使△PAB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,BC=2,點M是邊AB的中點,連接DM,DM與AC交于點P,點E在DC上,點F在DP上,且∠DFE=45°.若PF= ,則CE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:① = ;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是(
A.①②③④
B.①④
C.②③④
D.①②③

查看答案和解析>>

同步練習冊答案