(1)觀察發(fā)現(xiàn)
如圖(1):若點(diǎn)A、B在直線m同側(cè),在直線m上找一點(diǎn)P,使AP+BP的值最小,做法如下:
作點(diǎn)B關(guān)于直線m的對(duì)稱(chēng)點(diǎn)B′,連接AB′,與直線m的交點(diǎn)就是所求的點(diǎn)P,線段AB′的長(zhǎng)度即為AP+BP的最小值.
如圖(2):在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小,做法如下:
作點(diǎn)B關(guān)于AD的對(duì)稱(chēng)點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為 .
(2)實(shí)踐運(yùn)用
如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點(diǎn)B是的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的值最小,求BP+AP的最小值.
(3)拓展延伸
如圖(4):點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB、BC上作出點(diǎn)M,點(diǎn)N,使△PMN的周長(zhǎng)最小,保留作圖痕跡,不寫(xiě)作法.
(1) ;(2) ;(3)作圖見(jiàn)解析.
【解析】
試題分析:(1)觀察發(fā)現(xiàn):利用作法得到CE的長(zhǎng)為BP+PE的最小值;由AB=2,點(diǎn)E是AB的中點(diǎn),根據(jù)等邊三角形的性質(zhì)得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根據(jù)含30度的直角三角形三邊的關(guān)系得CE=;
(2)實(shí)踐運(yùn)用:過(guò)B點(diǎn)作弦BE⊥CD,連結(jié)AE交CD于P點(diǎn),連結(jié)OB、OE、OA、PB,根據(jù)垂徑定理得到CD平分BE,即點(diǎn)E與點(diǎn)B關(guān)于CD對(duì)稱(chēng),則AE的長(zhǎng)就是BP+AP的最小值;由于的度數(shù)為60°,點(diǎn)B是的中點(diǎn)得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判斷△OAE為等腰直角三角形,則AE=OA=;
(3)拓展延伸:分別作出點(diǎn)P關(guān)于AB和BC的對(duì)稱(chēng)點(diǎn)E和F,然后連結(jié)EF,EF交AB于M、交BC于N.
試題解析:(1)觀察發(fā)現(xiàn)
如圖(2),CE的長(zhǎng)為BP+PE的最小值,
∵在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn)
∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,
∴CE=BE=;
(2)實(shí)踐運(yùn)用
如圖(3),過(guò)B點(diǎn)作弦BE⊥CD,連結(jié)AE交CD于P點(diǎn),連結(jié)OB、OE、OA、PB,
∵BE⊥CD,
∴CD平分BE,即點(diǎn)E與點(diǎn)B關(guān)于CD對(duì)稱(chēng),
∵的度數(shù)為60°,點(diǎn)B是的中點(diǎn),
∴∠BOC=30°,∠AOC=60°,
∴∠EOC=30°,
∴∠AOE=60°+30°=90°,
∵OA=OE=1,
∴AE=OA=,
∵AE的長(zhǎng)就是BP+AP的最小值.
故答案為;
(3)拓展延伸:如圖(4).
考點(diǎn):1.圓的綜合題;2.軸對(duì)稱(chēng)-最短路線問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖南省株洲市攸縣七年級(jí)上學(xué)期期末測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分8分,每小題4分)解方程:
(1)
(2)已知方程是關(guān)于x 的一元一次方程.求m的值并解這個(gè)一元一次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年山東省九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知關(guān)于x 的一元二次方程 有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是( )
A.m>-1 B.m<-2 C.m ≥0 D.m<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年山東省濱州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖所示,給出下列條件:①∠B?∠ACD;②∠ADC?∠ACB;③;④AC2?AD·AB.其中單獨(dú)能夠判定△ABC∽△ACD的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年山東省濱州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
下列四個(gè)圖形圖案中,分別以它們所在圓的圓心為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)120°后,能與原圖形完全重合的是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宜興市九年級(jí)上學(xué)期第二次質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
已知,如圖,直線l經(jīng)過(guò)A(4,0)和B(0,4)兩點(diǎn),它與拋物線y=ax2在第一象限內(nèi)相交于點(diǎn)P,又知△AOP的面積為,求拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宜興市九年級(jí)上學(xué)期第二次質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題
已知x=1是一元二次方程x2+kx-2=0的一根,則方程的另一個(gè)根為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省宜興市九年級(jí)11月階段性檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
已知如圖1,Rt△ABC和Rt△ADE的直角邊AC和AE重疊在一起,AD=AE,∠B=30°,∠DAE=∠ACB=90°.
(1)如圖1,填空:∠BAD= ;= ;
(2)如圖2,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AE到AB邊上,∠ACH=∠BCH,連接BH,求∠CBH的度數(shù);
(3)如圖3,點(diǎn)P是BE上一點(diǎn),過(guò)A、E兩點(diǎn)分別作AN⊥PC、EM⊥PC,垂足分別為N、M,若EM=2,AN=5,求△AND的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣九年級(jí)上學(xué)期期末測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,Rt△AOB中,∠O=90°,OA=OB=3,⊙O的半徑為1,P是AB邊上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的切線PQ,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com