【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(rùn)(元)如下表.設(shè)分配給甲店A型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤(rùn)為W(元).

(1)求W關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤(rùn)不低于17560元,說(shuō)明有多少種不同分配方案?

(3)實(shí)際銷售過(guò)程中,公司發(fā)現(xiàn)這批產(chǎn)品尤其是A型產(chǎn)品很暢銷,便決定對(duì)甲店的最后21A型產(chǎn)品每件提價(jià)元銷售(為正整數(shù)).兩店全部銷售完畢后結(jié)果的總利潤(rùn)為18000元,求 .并寫(xiě)出公司這100件產(chǎn)品對(duì)甲乙兩店是如何分配的?

【答案】(1),的整數(shù);(2)有3種不同分配方案;(3)甲店:A型 39件 B型 31件;乙店:A型 1件 B型 29件.

【解析】

(1)設(shè)分配給甲店A型產(chǎn)品x件,則分配給甲店B型產(chǎn)品(70-x)件,分配給乙店A型產(chǎn)品(40-x)件,分配給乙店B型產(chǎn)品(x-10)件,然后根據(jù)它們的利潤(rùn)得到W=200x+170(70-x)+160(40-x)+150[30-(40-x)],然后整理即可;然后利用x≥0,40-x≥0,30-(40-x)≥0可得到x的取值范圍;

(2)根據(jù)W≥17560得到關(guān)于x的不等式以及(1)中x的取值范圍可得到整數(shù)x38、39、40,即有三種不同的分配方案;

(3)根據(jù)題意總利潤(rùn)為W加上21a等于18000,即20x+16800+21a=18000,整理得:21a+20x=1200,然后把x的值分別代入計(jì)算確定a的值,同時(shí)得到分配方案.

解:(1)

的整數(shù).

,的整數(shù).

(2)由題

的整數(shù).∴

∴有3種不同分配方案

(3)由題

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

公司對(duì)100件產(chǎn)品分配如下:甲店:A型 39件 B型 31件;乙店:A型 1件 B型 29件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于△ABC及其邊上的點(diǎn)P,給出如下定義:如果點(diǎn),,……,都在△ABC的邊上,且,那么稱點(diǎn),,,……,為△ABC關(guān)于點(diǎn)P的等距點(diǎn),線段,,……,為△ABC關(guān)于點(diǎn)P的等距線段.

1)如圖1,△ABC中,∠A90°,ABAC,點(diǎn)PBC的中點(diǎn).

①點(diǎn)B,C ABC關(guān)于點(diǎn)P的等距點(diǎn),線段PAPB ABC關(guān)于點(diǎn)P的等距線段;(填“是”或“不是”)

②△ABC關(guān)于點(diǎn)P的兩個(gè)等距點(diǎn)分別在邊AB,AC上,當(dāng)相應(yīng)的等距線段最短時(shí),在圖1中畫(huà)出線段,;

2)△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)PBC上,點(diǎn)C,D是△ABC關(guān)于點(diǎn)P的等距點(diǎn),且PC=1,求線段DC的長(zhǎng);

3)如圖2,在RtABC中,∠C90°,∠B30°.點(diǎn)PBC上,△ABC關(guān)于點(diǎn)P的等距點(diǎn)恰好有四個(gè),且其中一個(gè)是點(diǎn).,直接寫(xiě)出長(zhǎng)的取值范圍.(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度沿折線ACBA運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).

1)若點(diǎn)PAC上,且滿足PA=PB時(shí),求出此時(shí)t的值;

2)若點(diǎn)P恰好在∠BAC的角平分線上(但不與A點(diǎn)重合),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有3個(gè)大小相同的小球,球面上分別寫(xiě)有數(shù)字1、2、3.從袋中隨機(jī)地摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)地摸出一個(gè)小球.

1)請(qǐng)用樹(shù)形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;

2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,若∠ABC=30°,C=45°,ED=,點(diǎn)HBD上的一個(gè)動(dòng)點(diǎn),則HG+HC的最小值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形的項(xiàng)點(diǎn)的坐標(biāo)是.

1)直接寫(xiě)出點(diǎn)坐標(biāo)(____________),點(diǎn)坐標(biāo)(______,______);

2)如圖,D中點(diǎn).連接,,如果在第二象限內(nèi)有一點(diǎn),且四邊形的面積是面積的倍,求滿足條件的點(diǎn)的坐標(biāo);

3)如圖,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每鈔個(gè)單位的速度沿線段運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā).以每秒個(gè)單位的連度沿線段運(yùn)動(dòng),當(dāng)到達(dá)點(diǎn)時(shí),同時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是,在,運(yùn)動(dòng)過(guò)程中.當(dāng)時(shí),直接寫(xiě)出時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b是一元二次方程x(x﹣2)=x﹣2的兩根,且點(diǎn)A(﹣a,﹣b)是反比例函數(shù)圖象上的一個(gè)點(diǎn),若自點(diǎn)A向兩坐標(biāo)軸作垂線,兩垂線與坐標(biāo)軸構(gòu)成的矩形的面積是( 。

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:甲、乙兩車分別從相距300kmA,B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)圖象.

1)求甲車離出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)關(guān)系式,并標(biāo)明自變量的取值范圍;

2)若已知乙車行駛的速度是40千米/小時(shí),求出發(fā)后多長(zhǎng)時(shí)間,兩車離各自出發(fā)地的距離相等;

3)它們?cè)谛旭傔^(guò)程中有幾次相遇.并求出每次相遇的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案