【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDE.直接寫(xiě)出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說(shuō)明理由.
【答案】(1);(2)P(,0);(3)E(,﹣1),在.
【解析】試題分析:(1)將點(diǎn)A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;
(2)先由射影定理求出BC=3,那么B(,﹣3),計(jì)算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(﹣,﹣1),即可求解.
試題解析:(1)∵點(diǎn)A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達(dá)式為;
(2)∵A(,1),AB⊥x軸于點(diǎn)C,∴OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.
設(shè)點(diǎn)P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負(fù)半軸上的點(diǎn),∴m=﹣,∴點(diǎn)P的坐標(biāo)為(,0);
(3)點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:
∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點(diǎn)E在該反比例函數(shù)的圖象上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店試銷(xiāo)一款成本為 50 元的排球,規(guī)定試銷(xiāo)期間單價(jià)不低于成本價(jià),且獲利不得高于 40%。經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量 (個(gè))與銷(xiāo)售單價(jià) (元)之間滿足如圖所示的一次函數(shù)關(guān)系.
(1)試確定與 之間的函數(shù)關(guān)系式;
(2)若該體育用品商店試銷(xiāo)的這款排球所獲得的利潤(rùn)為 元,試寫(xiě)出利潤(rùn) (元)與銷(xiāo)售單價(jià) (元)之間的函數(shù)關(guān)系式;當(dāng)試銷(xiāo)單價(jià)定為多少元時(shí),該商店可獲最大利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,-2)、B(0,3),點(diǎn)C是x軸正半軸上的一點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為__________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為直線AB上的一點(diǎn),COE是直角,OF平分AOE(圖中所說(shuō)的角都是小于平角的角).
(1)如圖1,若COF58°,求BOE的度數(shù);
(2)將COE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置時(shí),若COFm°,求BOE的度數(shù)(用含字母m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從直徑為2cm的圓形紙片中,剪出一個(gè)圓心角為90°的扇形OAB,且點(diǎn)O、A、B在圓周上,把它圍成一個(gè)圓錐,則圓錐的底面圓的半徑是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中A(2,﹣1),B(4,3),C(1,2)
(1)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,ABC的對(duì)應(yīng)點(diǎn)分別為A′B′C′,畫(huà)出△A′B′C′,并寫(xiě)出A′B′C′的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(6,0)、B(8,8)兩點(diǎn).
(1)求拋物線的解析式;
(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標(biāo)平面內(nèi)有點(diǎn)P,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列函數(shù):①; ②; ③.從中任取一個(gè)函數(shù),取出的函數(shù)符合條件“當(dāng)時(shí),函數(shù)值隨增大而減小”的概率是( ).
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com