【題目】如圖,拋物線yax2+bx+3x軸于點(diǎn)A(﹣1,0)和點(diǎn)B3,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)連接BC,若點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),過(guò)點(diǎn)P作直線PNx軸于點(diǎn)N,交拋物線于點(diǎn)M,當(dāng)△BCM面積最大時(shí),求△BPN的周長(zhǎng).

3)在(2)的條件下,當(dāng)△BCM面積最大時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△CNQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x2+2x+3 2 3)見(jiàn)解析

【解析】

(1)將A、B點(diǎn)坐標(biāo)代入到解析式中求解即可;

(2)求得直線BC的解析式,然后求出△BCM的表達(dá)式,是一個(gè)二次函數(shù),求出其取最大值的條件;然后利用勾股定理求出△BPN的周長(zhǎng);

(3)C、N坐標(biāo)已知設(shè)點(diǎn)Q坐標(biāo)為(1,a),根據(jù)兩點(diǎn)之間的距離公式表示出CQ、QN、CN然后分三種情況:①CQ=QN;②CQ=CN;③QN=CN進(jìn)行列式解答.

解:(1)將點(diǎn)A(﹣1,0)、B(3,0)坐標(biāo)代入解析式中得:,解得,

∴拋物線解析式為y=﹣x2+2x+3;

(2)設(shè)直線BC的解析式為:y=kx+b,

則有:,解得:,

∴直線BC的解析式為:y=﹣x+3.

設(shè)P(x,﹣x+3),則M(x,﹣x2+2x+3),

∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.

,

∴當(dāng)時(shí),△BCM的面積最大.

此時(shí),

∴PN=ON=,

在Rt△BPN中,由勾股定理得:,

,

∴當(dāng)△BCM的面積最大時(shí),△BPN的周長(zhǎng)為

(3)由(2)知P點(diǎn)坐標(biāo)為,∴

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴拋物線的對(duì)稱軸為x=1,

設(shè)Q(1,a),∵C(0,3),,

,(兩點(diǎn)之間距離公式),

若△CNQ為等腰三角形,可分三種情況:

①當(dāng)CQ=QN時(shí),,解得:

∴點(diǎn)Q的坐標(biāo)為,

②當(dāng)CQ=CN時(shí),,解得:,

∴點(diǎn)Q的坐標(biāo)為,

③當(dāng)QN=CN時(shí),,解得:,

∴點(diǎn)Q的坐標(biāo)為,

綜合以上可得點(diǎn)Q的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=2EAB的中點(diǎn),FEC上一動(dòng)點(diǎn),PDF中點(diǎn),連接PB,則PB的最小值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半圓⊙O中,直徑AB=4,點(diǎn)C、D是半圓上兩點(diǎn),且∠BOC=84°,∠BOD=36°P為直徑上一點(diǎn),則PC+PD的最小值為(

A.4B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為24厘米,∠A=60°,點(diǎn)P從點(diǎn)A出發(fā)沿線路AB→BD作勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D同時(shí)出發(fā)沿線路DC→CB→BA作勻速運(yùn)動(dòng).

1)求BD的長(zhǎng);

2)已知點(diǎn)P、Q運(yùn)動(dòng)的速度分別為4厘米/秒,5厘米/秒,經(jīng)過(guò)12秒后,P、Q分別到達(dá)M、N兩點(diǎn),若按角的大小進(jìn)行分類,請(qǐng)你確定△AMN是哪一類三角形,并說(shuō)明理由;

3)設(shè)(2)中的點(diǎn)P、Q分別從M、N同時(shí)沿原路返回,點(diǎn)P的速度不變,點(diǎn)Q的速度改變?yōu)?/span>a厘米/秒,經(jīng)過(guò)3秒后,PQ分別到達(dá)E、F兩點(diǎn),若△BEF與(2)中的△AMN相似,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的正方形網(wǎng)格,△ABC的頂點(diǎn)在網(wǎng)格上,在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)是(-1,-1)

(1)把△ABC向左平移10格得到,畫出

(2)畫出關(guān)于x軸對(duì)稱的圖形;

(3)把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到,畫出,并寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:

1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問(wèn)第二輪傳染后總共是否會(huì)有21人患病的情況發(fā)生,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把函數(shù)y1x23x2(x0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來(lái)組成函數(shù)y3的圖象.若直線ykx2與函數(shù)y3的圖象剛好有兩個(gè)交點(diǎn),則滿足條件的k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長(zhǎng)線交于點(diǎn)E、F,連接EF,設(shè)CE=a,CF=b.

(1)如圖1,當(dāng)a=4時(shí),求b的值;

(2)當(dāng)a=4時(shí),如圖2,求出b的值;

(3)如圖3,請(qǐng)寫出EAF繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中a、b滿足的關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣60)、C(﹣1,0).

1)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的三角形△ABC′;

2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B″的坐標(biāo);

3)請(qǐng)直接寫出:以A、BC為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案