如圖,矩形紙片ABCD中,BC=4,AB=3,點(diǎn)P是BC邊上的動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點(diǎn)E.設(shè)BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A、 B、 C、 D、
D.
解析試題分析:根據(jù)題意,連接DE,因?yàn)椤鱌CD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又PE為∠BPC′的角平分線,可推知∠EPD=90°,又因?yàn)锽P=x,BE=y,BC=4,AB=3,分別用x和y表示出PD和EP和DE,在Rt△PED中利用勾股定理,即可得出一個(gè)關(guān)于x和y的關(guān)系式,化簡即可:
如圖,連接DE,
∵△PCD沿PD翻折,得到△PC′D,∴DP平分∠CPC′.
又∵PE為∠BPC′的角平分線,∴∠EPD=90°.
∵BP=x,BE=y,BC=4,AB=3,
∴Rt△PCD中,PC=4-x,DC=3,故,
在Rt△EBP中,BP=x,BE=y,故PE2=x2+y2,
在Rt△ADE中,AE=3-y,AD=4,故,
在Rt△PDE中,DE2=PD2+PE2,即,化簡得:.
結(jié)合題意,它是開口向下的拋物線,只有選項(xiàng)D符合題意.
故選D.
考點(diǎn):1.動點(diǎn)問題的函數(shù)圖象;2.翻折問題;3.勾股定理;4.數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:單選題
拋物線y=2(x﹣3)2+1的頂點(diǎn)坐標(biāo)是( 。
A.(3,1) | B.(3,﹣1) | C.(﹣3,1) | D.(﹣3,﹣1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,直角坐標(biāo)系中,兩條拋物線有相同的對稱軸,下列關(guān)系式中不正確的是( )
A.h=m | B.n>h | C.k>n | D.h>0,k>0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
已知:二次函數(shù),下列說法中錯誤的個(gè)數(shù)是( )
①若圖象與軸有交點(diǎn),則.
②若該拋物線的頂點(diǎn)在直線上,則的值為.
③當(dāng)時(shí),不等式的解集是.
④若將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后過點(diǎn),則.
⑤若拋物線與x軸有兩個(gè)交點(diǎn),橫坐標(biāo)分別為、,則當(dāng)x取時(shí)的函數(shù)值與x取0時(shí)的函數(shù)值相等.
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的兩個(gè)根,則實(shí)數(shù)x1,x2,a,b的大小關(guān)系為( )
A.x1<x2<a<b | B.x1<a<x2<b | C.x1<a<b<x2 | D.a(chǎn)<x1<b<x2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
若二次函數(shù)的圖象經(jīng)過點(diǎn)P(-2,4),則該圖象必經(jīng)過點(diǎn)( )
A.(2,4) | B.(-2,-4) | C.(-4,2) | D.(4,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動,到點(diǎn)C,D時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為
A. B. C. D,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com