【題目】如圖,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E,過點(diǎn)E作EF⊥BC交BC的延長線于點(diǎn)F.請補(bǔ)全圖形后完成下面的問題:
(1)求證:EF是△ABC外接圓的切線;
(2)若BC=5,sin∠ABC=,求EF的長.
【答案】(1)見解析 (2)6
【解析】
(1)根據(jù)已知條件得到△ABC的外接圓圓心O是斜邊AB的中點(diǎn).連接OE,根據(jù)等腰三角形的性質(zhì)和角平分線的定義得到∠1=∠3.求得OE∥BF.于是得到結(jié)論;
(2)根據(jù)三角函數(shù)的定義得到.根據(jù)勾股定理得到AC=12.根據(jù)矩形的性質(zhì)即可得到結(jié)論.
(1)補(bǔ)全圖形如圖所示,
∵△ABC是直角三角形,
∴△ABC的外接圓圓心O是斜邊AB的中點(diǎn).
連接OE,
∴OE=OB.
∴∠2=∠3,
∵BE平分∠ABC,
∴∠1=∠2,
∴∠1=∠3.
∴OE∥BF.
∵EF⊥BF,
∴EF⊥OE,
∴EF是△ABC外接圓的切線;
(2)在Rt△ABC中,BC=5,sin∠ABC=,
∴.
∵AC2+BC2=AB2,
∴AC=12.
∵∠ACF=∠CFE=∠FEH=90°,
∴四邊形CFEH是矩形.
∴EF=HC,∠EHC=90°.
∴EF=HC=AC=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,AC=BC,D是BC上一點(diǎn),連接AD,將線段AD繞著點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)D的對應(yīng)點(diǎn)E在BC的延長線上。過點(diǎn)E作EF⊥AD垂足為點(diǎn)G,
(1)求證:FE=AE;
(2)填空:=__________
(3)若,求的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的直徑AB和弦CD相交于點(diǎn)E,且點(diǎn)B是劣弧DF的中點(diǎn).
(1)求證:△EBD≌△EBF;
(2)已知AE=1,EB=5,∠DEB=30°,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合,DF=8.
(1)若P是BC上的一個動點(diǎn),當(dāng)PA=DF時,求此時∠PAB的度數(shù);
(2)將圖①中的等腰直角三角板ABC繞點(diǎn)B順時針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,AC與BD交于點(diǎn)O,連接CD,如圖②.
①探求△CDO的形狀,并說明理由;
②在圖①中,若P是BC的中點(diǎn),連接FP,將等腰直角三角板ABC繞點(diǎn)B順時針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角α= 時,FP長度最大,最大值為 (直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點(diǎn)坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)A在y軸上,點(diǎn)C在x軸上,BC⊥x軸,tan∠ACO=.延長AC到點(diǎn)D,過點(diǎn)D作DE⊥x軸于點(diǎn)G,且DG=GE,連接CE,反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B,和CE交于點(diǎn)F,且CF:FE=2:1.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=3,AC=4,點(diǎn)M,Q分別是邊AB,BC上的動點(diǎn)(點(diǎn)M不與A,B重合),且MQ⊥BC,過點(diǎn)M作BC的平行線MN,交AC于點(diǎn)N,連接NQ,設(shè)BQ為x.
(1)試說明不論x為何值時,總有△QBM∽△ABC;
(2)是否存在一點(diǎn)Q,使得四邊形BMNQ為平行四邊形,試說明理由;
(3)當(dāng)x為何值時,四邊形BMNQ的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,以AB為直徑在矩形內(nèi)作半圓,與DE相切于點(diǎn)E(如圖),延長DE交BC于F,若BF=,則陰影部分的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com