【題目】(1)感知:如圖(1),在△ABC中,分別以AB、AC為邊在△ABC外部作等邊三角形△ABD、△ACE,連接CD、BE.求證:BE=DC;
(2)應用:如圖(2),在△ABC中,AB>AC,分別以AB、AC為邊在△ABC內部作等腰三角形△ABD、△ACE,點E恰好在BC邊上,使AB=AD,AC=AE,且∠BAD=∠CAE,連接CD,CE=3cm,CD=2cm,△ABC的面積為25cm2,求△ABE的面積.
【答案】(1)證明見解析;(2)△ABE的面積是10cm2.
【解析】
探究:證明△ADC≌△ABE(SAS),可得BE=DC;
應用:過A點作△ABC的高線,垂足為F.先證明△ADC≌△ABE,可得BE=DC=2,利用面積求得AF=10,則△ABE的面積可求出.
感知:證明:∵△ABD和△ACE為等邊三角形,
∴∠EAC=∠DAB=60°,
∴∠DAB+∠BAC=∠EAC+∠CAB,
∴∠DAC=∠EAB,
∵AD=AB,AC=AE,
∴△ADC≌△ABE(SAS),
∴BE=DC;
應用:解:過A點作△ABC的高線,垂足為F.
∵∠BAD=∠EAC,
∴∠BAD﹣∠EAD=∠EAC﹣∠EAD,
∴∠BAE=∠DAC,
∵AB=AD,AE=AC
∴△ABE≌△ADC(SAS),
∴DC=BE=2,
∵EC=3,
∴BC=5,
∵△ABC的面積是25cm2,
∴,
∴AF=10,
∴△ABE的面積是=10cm2
∴△ABE的面積是10cm2.
科目:初中數學 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,過格點A、B、C作一圓。
(1)弧AC的長為_____(結果保留π);
(2)點B與圖中格點的連線中,能夠與該圓弧相切的連線所對應的格點的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數y=(m為常數,m>1,x>0)的圖象經過點P(m,1)和Q(1,m),直線PQ與x軸,y軸分別交于C,D兩點,點M(x,y)是該函數圖象上的一個動點,過點M分別作x軸和y軸的垂線,垂足分別為A,B.
(1)求∠OCD的度數;
(2)當m=3,1<x<3時,存在點M使得△OPM∽△OCP,求此時點M的坐標;
(3)當m=5時,矩形OAMB與△OPQ的重疊部分的面積能否等于4.1?請說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程
(1)若方程有兩個相等的實數根,求m的值,并求出此時方程的根;
(2)是否存在正數m,使方程的兩個實數根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=x2+bx圖象的對稱軸為直線x=1,若關于x的一元二次方程x2+bx﹣t=0(t為實數)在﹣1≤x≤2的范圍內有解,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y = 2x2 -4x -6.
(1)用配方法將y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并寫出對稱軸和 頂點坐標。
(2)在平面直角坐標系中,畫出這個二次函數的圖象;
(3)當時,求y的取值范圍;
(4)求函數圖像與兩坐標軸交點所圍成的三角形的面積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com