【題目】已知AB//CD,點(diǎn)E為平面內(nèi)一點(diǎn),BE⊥CEE

1)如圖1,請(qǐng)直接寫(xiě)出∠ABE∠DCE之間的數(shù)量關(guān)系

2)如圖2,過(guò)點(diǎn)EEF⊥CD,垂足為F,求證:∠CEF=∠ABE

3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CDD,連接BD,若∠DBE+∠ABD180°,且∠BDE3GEF,求∠BEG的度數(shù).

【答案】1)∠ECD90°+∠ABE;2)見(jiàn)解析;(3105°

【解析】

1)如圖1中,從BEDC的延長(zhǎng)線于H.利用三角形內(nèi)角和定理即可證明;

2)只要證明∠CEF與∠CEM互余,∠BEM與∠CEM互余,可得∠CEF=∠BEM即可解決問(wèn)題;

3)如圖3中,設(shè)∠GEF,∠EDF.想辦法構(gòu)建方程求出即可解決問(wèn)題;

1)結(jié)論:∠ECD90°+∠ABE

理由:如圖1中,延長(zhǎng)BEDC的延長(zhǎng)線于H

ABCH

∴∠ABE=∠H,

BECE,

∴∠CEH90°,

∴∠ECH180°CEHH180°90°H90°H,

∴∠ECD180°ECH180°90°H)=90°+∠H

∴∠ECD90°+∠ABE

2)如圖2中,作EMCD,

EMCDCDAB,

ABCDEM,

∴∠BEM=∠ABE,∠F+∠FEM180°,

EFCD,

∴∠F90°,

∴∠FEM90°,

∴∠CEF與∠CEM互余,

BECE,

∴∠BEC90°,

∴∠BEM與∠CEM互余,

∴∠CEF=∠BEM

∴∠CEF=∠ABE

3)如圖3中,設(shè)∠GEF,∠EDF

∴∠BDE3GEF3,

EG平分∠CEF

∴∠CEF2FEG2,

∴∠ABE=∠CEF2,

ABCDEM

∴∠MED=∠EDF,∠KBD=∠BDF3,∠ABD+∠BDF180°,

∴∠BED=∠BEM+∠MED2,

ED平分∠BEF,

∴∠BED=∠FED2,

∴∠DEC,

∵∠BEC90°,

2290°,

∵∠DBE+∠ABD180°,∠ABD+∠BDF180°,

∴∠DBE=∠BDF=∠BDE+∠EDF3,

∵∠ABK180°,

∴∠ABE+∠BDBE+∠KBD180°,

2+(3)+(3α+)=180°,

6+(22)=180°,

15°,

∴∠BEG=∠BEC+∠CEG90°+15°=105°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣ 時(shí),①求h的值;
②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)長(zhǎng)為4,寬為3,高為12矩形牛奶盒,從上底一角的小圓孔插入一根到達(dá)底部的直吸管,吸管在盒內(nèi)部分a的長(zhǎng)度范圍是(牛奶盒的厚度、小圓孔的大小及吸管的粗細(xì)均忽略不計(jì))(  )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4D. 12≤a≤13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CACBE,F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α

(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F在射線CD上.

①如圖1,若∠BCA90°,∠α90°,則BE CF

②如圖2,若<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件 ,使①中的結(jié)論仍然成立,并說(shuō)明理由;

(2)如圖3,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個(gè)送奶站,C為公路上一供奶站,CACB為供奶路線,現(xiàn)已測(cè)得AC=8km,BC=15kmAB=17km,1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問(wèn):多長(zhǎng)時(shí)間后這個(gè)人距B送奶站最近?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè),再?gòu)闹腥我饷?個(gè)球是白球的概率為 .
(1)試求袋中藍(lán)球的個(gè)數(shù);
(2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹(shù)狀圖或列表法表示兩次摸到球的所有可能結(jié)果,并求兩次摸到的球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠ADE的大小是(
A.45°
B.54°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,A(mn+2),B(m+4n)

1)當(dāng)m2,n2時(shí),

①如圖1,連接AO、BO,求三角形ABO的面積;

②如圖2,在y軸上是否存在點(diǎn)P,使三角形PAB的面積等于8,若存在,求P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

2)如圖3,過(guò)AB兩點(diǎn)作直線AB,當(dāng)直線AB過(guò)y軸上點(diǎn)Q(0,3)時(shí),試求出m,n的關(guān)系式.

(溫情提示:(a+b)×(c+d)ac+ad+bc+bd

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一塊正方形ABCD木板上要貼三種不同的墻紙,正方形EFCG部分貼A型墻紙,△ABE部分貼B型墻紙,其余部分貼C型墻紙.A型、B型、C型三種墻紙的單價(jià)分別為每平方米60元、80元、40元.

(1)探究1:如果木板邊長(zhǎng)為1米,F(xiàn)C= 米,則一塊木板用墻紙的費(fèi)用需元;
(2)探究2:如果木板邊長(zhǎng)為2米,正方形EFCG的邊長(zhǎng)為x米,一塊木板需用墻紙的費(fèi)用為y元,
①用含x的代數(shù)式表示y(寫(xiě)過(guò)程).
②如果一塊木板需用墻紙的費(fèi)用為225元,求正方形EFCG的邊長(zhǎng)為多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案