【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,交AC于F,若MN=2,則NF=___________
【答案】1
【解析】
連接AN、AM,根據(jù)等腰三角形性質(zhì)可知∠B=∠C=30°,利用線段垂直平分線定理可得BM=AM,AN=CN,根據(jù)等邊對等角可知∠B=∠MAB,∠NAC=∠C,即可知道△AMN是等邊三角形,進而得到AN的長,利用直角三角形中30°角所對的直角邊是斜邊的一半,即可求得NF的長.
如圖,連接AN、AM,
∵AB=AC,∠A=120°,
∴∠B=∠C=30°,
∵ME、NF分別垂直平分線段AB、AC
∴BM=AM,AN=CN,
∴∠B=∠MAB=30°,∠NAC=∠C=30°,
∴∠AMN=∠MAN=∠MNA=60°
∴△AMN是等邊三角形,
∴AN=MN=2
在Rt△ANF中,∠NAF=30°
∴NF=AN=1
故答案為:1
科目:初中數(shù)學 來源: 題型:
【題目】某校在八年級(1)班學生中開展對于“我國國家公祭日”知曉情況的問卷調(diào)調(diào)查. 問卷調(diào)查的結(jié)果分為A、B、C、D四類,其中A類表示“非常了解”;B類表示“比較了解”;C類表示“基本了解”;D類表示“不太了解”;班長將本班同學的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計圖.
請根據(jù)上述信息解答下列問題:
(1)該班參與問卷調(diào)查的人數(shù)有 人;
(2)補全條形統(tǒng)計圖;
(3)求C類人數(shù)占總調(diào)查人數(shù)的百分比;
(4)求扇形統(tǒng)計圖中A類所對應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知,且3x+4z﹣2y=40,求x,y,z的值;
(2)已知:兩相似三角形對應(yīng)高的比為3:10,且這兩個三角形的周長差為560cm,求它們的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量某教學樓CD的高度,小明在教學樓前距樓基點C,12米的點A處測得樓頂D的仰角為50°,小明又沿CA方向向后退了3米到點B處,此時測得樓頂D的仰角為40°(B、A、C在同一水平線上),依據(jù)這些數(shù)據(jù)小明能否求出教學樓的高度?若能求,請你幫小明求出樓高;若不能求,請說明理由.(取2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點,且∠EAF=60°,請?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問題的方法是:延長FD到點G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進而可得線段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF=∠BAD.問(1)中的線段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.
(1)若AB=4,AC=5,則BC邊的取值范圍是 ;
(2)點D為BC延長線上一點,過點D作DE∥AC,交BA的延長線于點E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點B(8,9),則這個二次函數(shù)的表達式為______,小孩將球拋出了約______米(精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥DA于Q,∠BPQ的度數(shù)是_____;若PQ=3,EP=1,則DA的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
(1)求證:∠BDC=∠BAC;
(2)若AB=AC,請判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com