【題目】某校在八年級(1)班學(xué)生中開展對于“我國國家公祭日”知曉情況的問卷調(diào)調(diào)查. 問卷調(diào)查的結(jié)果分為A、B、C、D四類,其中A類表示“非常了解”;B類表示“比較了解”;C類表示“基本了解”;D類表示“不太了解”;班長將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計圖.
請根據(jù)上述信息解答下列問題:
(1)該班參與問卷調(diào)查的人數(shù)有 人;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)求C類人數(shù)占總調(diào)查人數(shù)的百分比;
(4)求扇形統(tǒng)計圖中A類所對應(yīng)扇形圓心角的度數(shù).
【答案】(1)50;(2)見詳解;(3);(4).
【解析】
(1)利用樣本估計總體,將D類型的人數(shù)與其所占的百分比相除即可;
(2)用該班參與問卷調(diào)查的人數(shù)減去A、B、C類的人數(shù)即可;
(3)用C類人數(shù)除以總調(diào)查人數(shù)即可;
(4)求出A類人數(shù)占總調(diào)查人數(shù)的百分比,再乘以即可.
解:(1)該班參與問卷調(diào)查的人數(shù)有人;
(2)C類人數(shù)為人,補(bǔ)全條形統(tǒng)計圖如下圖所示:
(3)C類人數(shù)占總調(diào)查人數(shù)的百分比為;
(4)扇形統(tǒng)計圖中A類所對應(yīng)扇形圓心角的度數(shù)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某電信公司提供了,兩種方案的移動通訊費用(元)與通話時間(分)之間的關(guān)系,則以下說法正確的是( )
①若通話時間少于120分,則方案比方案便宜
②若通話時間超過200分,則方案比方案便宜
③通訊費用為60元,則方案比方案的通話時間多
④當(dāng)通話時間是170分鐘/時,兩種方案通訊費用相等
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=4cm,BC=3cm,若動點P從點C開始,沿C→A→B→C的路徑運動一周,且速度為每秒2cm,設(shè)運動時間為t秒,當(dāng)t=_____時,點P與△ABC的某兩個頂點構(gòu)成等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點,使得AE⊥DE;
(1)求證:△ABE∽△ECD;
(2)若AB=4,AE=BC=5,求CD的長;
(3)當(dāng)△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“感冒”,某學(xué)校對教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖。現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量為6毫克,請根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為___,自變量x的取值范圍是___;藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為___.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過___分鐘后,學(xué)生才能回到教室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.在此運動變化的過程中,下列結(jié)論:①△DFE是等腰直角三角形;②DE長度的最小值為4;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結(jié)論是( 。
A.①②③B.①③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,交AC于F,若MN=2,則NF=___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com