解:(1)證明:連接AC,如下圖所示,
∵四邊形ABCD為菱形,∠BAD=120°,
∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC和△ACD為等邊三角形,
∴∠4=60°,AC=AB,
∵在△ABE和△ACF中, ,
∴△ABE≌△ACF(ASA).
∴BE=CF;
(2)四邊形AECF的面積不變,△CEF的面積發(fā)生變化.
理由:
由(1)得△ABE≌△ACF, 則S△ABE=S△ACF,
故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
作AH⊥BC于H點(diǎn),則BH=2,
S四邊形AECF=S△ABC=BC*AH=BC*=4,
由“垂線段最短”可知:當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.
故△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,
又S△CEF=S四邊形AECF﹣S△AEF,
則此時(shí)△CEF的面積就會(huì)最大.
∴S△CEF=S四邊形AECF﹣SAEF=4﹣×2×=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com