【題目】如圖,已知圓錐的底面半徑是2,母線長是6.

(1)求這個圓錐的高和其側面展開圖中∠ABC的度數(shù);

(2)如果A是底面圓周上一點,從點A拉一根繩子繞圓錐側面一圈再回到A,求這根繩子的最短長度.

【答案】(1)∠ABC=120°;(2)這根繩子的最短長度是.

【解析】

1)根據(jù)勾股定理直接求出圓錐的高,再利用圓錐側面展開圖弧長與其底面周長的長度關系,求出側面展開圖中∠ABC的度數(shù)即可;

2)首先求出BD的長,再利用勾股定理求出AD以及AC的長即可.

(1)圓錐的高=

底面圓的周長等于:2π×2=

解得:n=120°;

(2)連結AC,BBDACD,則∠ABD=60°.

AB=6,可求得BD=3,

AD

AC=2AD=,

即這根繩子的最短長度是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB8,ACBD相交于點O

1)如圖,作射線OM與邊BC相交于點E,將射線OM繞點O順時針旋轉90°,得到射線ON,射線ON與邊AB相交于點F,連接EFBO于點G

①直接寫出四邊形OEBF的面積是_______.

②求證:OEF是等腰直角三角形.

③若OG,求OE的長.

2)點P在射線CA上一點,若BP2,射線PM與直線BC相交于點E,當CE2時,將射線PM繞點P順時針旋轉45°,得到射線PN,射線PN與直線BC相交于點F,請直接寫出BF的長________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,拋物線yax2+bx+cx軸交于點A(﹣10),B3,0),與y軸交于點C0,3),頂點為G

1)求拋物線和直線AC的解析式;

2)如圖,設Em,0)為x軸上一動點,若△CGE和△CGO的面積滿足SCGESCGO,求點E的坐標;

3)如圖,設點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向右運動,運動時間為ts,點M為射線AC上一動點,過點MMNx軸交拋物線對稱軸右側部分于點N.試探究點P在運動過程中,是否存在以P,MN為頂點的三角形為等腰直角三角形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B,與軸交于點C。過點CCDx軸,交拋物線的對稱軸于點D,連結BD。已知點A坐標為(-1,0)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

14x2=(x12

2xx3)=2x

3)(x+322x+7

42

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A0,3),Bx軸正半軸上一動點,將點A繞點B順時針旋轉60°得點C,OB延長線上有一點D,滿足∠BDC=∠BAC,則線段BD長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利元.為了擴大銷售,增加盈利,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),在一定范圍內,襯衫的單價每下降元,商場平均每天可多售出件.

如果商場通過銷售這批襯衫每天獲利元,那么襯衫的單價應下降多少元?

當每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店為了迎接讀書節(jié)制定了活動計劃,以下是活動計劃書的部分信息:

讀書節(jié)活動計劃書

書本類別

A

B

進價(單位:元)

18

12

備注

1.用不超過16800元購進A,B兩類圖書共1000本;

2.A類圖書不少于600本;

……

(1)陳經(jīng)理查看計劃數(shù)時發(fā)現(xiàn):A類圖書的標價是B類圖書標價的1.5倍,若顧客用540元購買圖書,能單獨購買A類圖書的數(shù)量恰好比單獨購買B類圖書的數(shù)量少10本,請求出A,B兩類圖書的標價;

(2)經(jīng)市場調查后,陳經(jīng)理發(fā)現(xiàn)他們高估了讀書節(jié)對圖書銷售的影響,便調整了銷售方案,A類圖書每本標價降低a(0<a<5)銷售,B類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P是⊙O外一點,PO交圓O于點C,OC=CP=2,弦ABOC,劣弧AB的度數(shù)為120°,連接PB.

(1)求BC的長;

(2)求證:PB是⊙O的切線.

查看答案和解析>>

同步練習冊答案