如圖,PA切⊙O于點A,PBC是經(jīng)過O點的割線,若∠P=30°,則弧AB的度數(shù)是(  )
A.30°B.60°C.90°D.120°

連接OA,PA切⊙O于點A,
則∠PAO=90°,
∴∠AOP=90°-∠P=60°,
∴弧AB的度數(shù)是60°.
故選B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,直線AM⊥AN,⊙O分別與AM、AN相切于B、C兩點,連接OC、BC,則有∠ACB=∠OCB;(請思考:為什么?)如果測得AB=a,則可知⊙O的半徑r=a.(請思考:為什么?)
(1)將圖①中直線AN向右平移,與⊙O相交于C1、C2兩點,⊙O與AM的切點仍記為B,如圖②.請你寫出與平移前相應(yīng)的結(jié)論,并將圖②補充完整;判斷此結(jié)論是否成立,且說明理由.
(2)在圖②中,若只測得AB=a,能否求出⊙O的半徑r?若能求出,請你用a表示r;若不能求出,請補充一個條件(補充條件時不能添加輔助線,若補充線段請用b表示,若補充角請用α表示),并用a和補充的條件表示r.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分線交AB于點O,以O(shè)為圓心的⊙O與AC相切于點D.
(1)求證:⊙0與BC相切;
(2)當AC=2時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在三角板ABC中,∠C=90°,∠B=30°,O為AB上一點,⊙O的半徑為1,現(xiàn)將三角板平移,使AC與⊙O相切,則AO=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC的大小是(  )
A.70°B.40°C.50°D.20°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,過點D的切線交BC于E.
(1)求證:DE=
1
2
BC;
(2)若tanC=
5
2
,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l與半徑為5的⊙O相交于A、B兩點,且與半徑OC垂直,垂足為H.若AB=8cm,l要與⊙O相切,則l應(yīng)沿OC所在直線向下平移______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一個長寬高分別為l,b,h的長方體紙箱裝滿了一層高為h的圓柱形易拉罐,求紙箱空間的利用率.(易拉罐總體積與紙箱容積的比,結(jié)果精確到1%)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,∠C=Rt∠,BC=4,AC=3,兩個外切的等圓⊙O1,⊙O2各與AB,AC,BC相切于F,H,E,G,求兩圓的半徑.

查看答案和解析>>

同步練習冊答案