【題目】如圖,在平面直角坐標系中,點A(-5,0),以OA為半徑作半圓,點C是第一象限內(nèi)圓周上一動點,連結AC、BC,并延長BC至點D,使CD=BC,過點D作x軸垂線,分別交x軸、直線AC于點E、F,點E為垂足,連結OF.
(1)當∠BAC=30時,求△ABC的面積;
(2)當DE=8時,求線段EF的長;
(3)在點C運動過程中,是否存在以點E、O、F為頂點的三角形與△ABC相似,若存在,請求出點E的坐標;若不存在,請說明理由.
【答案】(1);(2)3;(3)存在,點E的坐標為(,0) ;(,0);(,0)
【解析】
(1)根據(jù)圓周角定理求得∠ACB=90°,根據(jù)30°的直角三角形的性質(zhì)求得BC,進而根據(jù)勾股定理求得AC,然后根據(jù)三角形面積公式即可求得;
(2)連接AD,由垂直平分線的性質(zhì)得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依題意證明△AEF∽△DEB,利用相似比求EF;
(3)當以點E、O、F為頂點的三角形與△ABC相似時,分為兩種情況:①當交點E在O,B之間時;②當點E在O點的左側(cè)時;分別求E點坐標.
(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
在Rt△ABC中,AB=10,∠BAC=30°,
∴BC=AB=5,
∴AC=,
∴S△ABC=ACBC=;
(2)連接AD,
∵∠ACB=90°,CD=BC,
∴AD=AB=10,
∵DE⊥AB,
∴AE==6,
∴BE=ABAE=4,
∴DE=2BE,
∵∠AFE+∠FAE=90°, ∠DBE+∠FAE=90°,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB=90°,
∴△AEF∽△DEB,
∴=2,
∴EF=AE=×6=3;
(3)連接EC,設E(x,0),
當的度數(shù)為60°時,點E恰好與原點O重合;
①0°<的度數(shù)<60°時,點E在O、B之間,∠EOF>∠BAC=∠D,
又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此時有△EOF∽△EBD,
∴,
∵EC是Rt△BDE斜邊的中線,
∴CE=CB,
∴∠CEB=∠CBE,
∴∠EOF=∠CEB,
∴OF∥CE,
∴△AOF∽△AEC
∴,
∴,即,
解得x=,因為x>0,
∴x=;
②60°<的度數(shù)<90°時,點E在O點的左側(cè),
若∠EOF=∠B,則OF∥BD,
∴OF=BC=BD,
∴即解得x=,
若∠EOF=∠BAC,則x=,
綜上點E的坐標為(,0) ;(,0);(,0).
科目:初中數(shù)學 來源: 題型:
【題目】在去年的體育中考中,某校6名學生的體育成績統(tǒng)計如下表:
成績 | 17 | 18 | 20 |
人數(shù) | 2 | 3 | 1 |
則下列關于這組數(shù)據(jù)的說法錯誤的是( 。
A.眾數(shù)是18B.中位數(shù)是18C.平均數(shù)是18D.方差是2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點P是AB邊上的動點,過點P作⊙O的一條切線PC(點C為切點),則線段PC長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,弦,連接、;
(1)如圖1,求證:;
(2)如圖2,在線段上取點,連接并延長交于點,交于點,,連接、、,,求的正切值;
(3)如圖3,在(2)的條件下,交于點,,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移5個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點C,兩函數(shù)圖象分別交于B、D兩點.
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點M是y軸上的動點,在平面內(nèi)是否存在一點N,使以B、D、M、N為頂點的四邊形為矩形?若存在,請求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景點試開放期間,團隊收費方案如下:不超過30人時,人均收費120元;超過30人且不超過m(30<m≤100)人時,每增加1人,人均收費降低1元;超過m人時,人均收費都按照m人時的標準.設景點接待有x名游客的某團隊,收取總費用為y元.
(1)求y關于x的函數(shù)表達式;
(2)景點工作人員發(fā)現(xiàn):當接待某團隊人數(shù)超過一定數(shù)量時,會出現(xiàn)隨著人數(shù)的增加收取的總費用反而減少這一現(xiàn)象.為了讓收取的總費用隨著團隊中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明對函數(shù)的圖象和性質(zhì)進行了探究.已知當自變量的值為或時,函數(shù)值都為;當自變量的值為或時,函數(shù)值都為.探究過程如下,請補充完整.
(1)這個函數(shù)的表達式為 ;
(2)在給出的平面直角坐標系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的--條性質(zhì): ;
(3)進一步探究函數(shù)圖象并解決問題:
①直線與函數(shù)有三個交點,則 ;
②已知函數(shù)的圖象如圖所示,結合你所畫的函數(shù)圖象,寫出不等式的解集: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com