函數(shù)y=x和y=在同一直角坐標(biāo)系中的圖象大致是( )
A.
B.
C.
D.
【答案】分析:分別根據(jù)正比例函數(shù)與反比例函數(shù)圖象的特點(diǎn)解答.
解答:解:∵y=x的圖象過原點(diǎn)、第一、三象限,y=的圖象在第二、四象限,∴四個(gè)選項(xiàng)中只有D符合.
故選D.
點(diǎn)評:本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),在Rt△ABC的邊AB的同側(cè),分別以三邊為直徑作三個(gè)半圓,大半圓以外的兩部分面積分別為S1、S3,三角形的面積為S2
如圖(2),兩個(gè)反比例函數(shù)y=
2
x
y=
1
x
在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=
2
x
的圖象上,PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,交y=
1
x
的圖象于分別于點(diǎn)A,B,當(dāng)點(diǎn)P在y=
2
x
的圖象上運(yùn)動(dòng)時(shí),△BOD,四邊形OAPB,△AOC的面積分別為S1、S2、S3;
如圖(3),點(diǎn)E為?ABCD邊AD上任意一點(diǎn),三個(gè)三角形的面積分別為S1、S2、S3;
如圖(4),梯形ABCD中,AB∥CD,∠DAB+∠ABC=90°,AB=2CD,以AD、DC、CB為邊作三個(gè)正方形的面積分別為S1、S2、S3
在這四個(gè)圖形中滿足S1+S3=S2
 
(填序號).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鹽城模擬)如圖(1),分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上)交y軸于另一點(diǎn)Q,拋物線y=
14
x2+bx+c
經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),B點(diǎn)坐標(biāo)為(2,2).
(1)求拋物線的函數(shù)解析式和點(diǎn)E的坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)如圖(2),點(diǎn)R從正方形CDEF的頂點(diǎn)E出發(fā)以1個(gè)單位/秒的速度向點(diǎn)F運(yùn)動(dòng),同時(shí)點(diǎn)S從點(diǎn)Q出發(fā)沿y軸以5個(gè)單位/秒的速度向上運(yùn)動(dòng),連接RS,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<1),在運(yùn)動(dòng)過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=
35
.一動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿OB方向勻速運(yùn)動(dòng);另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿BO方向勻速運(yùn)動(dòng).兩動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)?shù)谝淮蜗嘤鰰r(shí)即停止運(yùn)動(dòng).在點(diǎn)P、Q運(yùn)動(dòng)的過程中,以PQ為一邊作正方形PQMN,使正方形PQMN和△AOB在線段OB的同側(cè).設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求OA和OB的長度;
(2)在點(diǎn)P、Q運(yùn)動(dòng)的過程中,設(shè)正方形PQMN和△AOB重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(3)如圖②,現(xiàn)以△AOB的直角邊OB為x軸,頂點(diǎn)O為原點(diǎn)建立平面直角坐標(biāo)系xOy.取OB的中點(diǎn)C,將過點(diǎn)A、C、B的拋物線記為拋物線T.
①求拋物線T的函數(shù)解析式;
②設(shè)拋物線T的頂點(diǎn)為點(diǎn)D.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,設(shè)正方形PQMN的對角線PM、QN交于點(diǎn)E,連接DE、DN.是否存在這樣的t,使得△DEN是以EN、DE為兩腰或以EN、DN為兩腰的等腰三角形?若存在,請求出對應(yīng)的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題正確的有
③⑤
③⑤

①在同圓或等圓中,圓心角的度數(shù)是圓周角的兩倍;
②在反比例函數(shù)y=
2
x
中,如果函數(shù)值y<1時(shí),那么自變量x>2;
③對于函數(shù)y=
(13t-12)2+625
,當(dāng)t=
12
13
時(shí),y的最小值是25;
④⊙O是等腰△ABC的外接圓且半徑為2,點(diǎn)O到底邊AC的距離為1,則△ABC 是正三角形且S△ABC=3
3
;
⑤函數(shù)y1=-x2+5的圖象可由函數(shù)y2=(x-2)2-5的圖象,通過翻折和平移所得.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=數(shù)學(xué)公式.一動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿OB方向勻速運(yùn)動(dòng);另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿BO方向勻速運(yùn)動(dòng).兩動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)?shù)谝淮蜗嘤鰰r(shí)即停止運(yùn)動(dòng).在點(diǎn)P、Q運(yùn)動(dòng)的過程中,以PQ為一邊作正方形PQMN,使正方形PQMN和△AOB在線段OB的同側(cè).設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求OA和OB的長度;
(2)在點(diǎn)P、Q運(yùn)動(dòng)的過程中,設(shè)正方形PQMN和△AOB重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(3)如圖②,現(xiàn)以△AOB的直角邊OB為x軸,頂點(diǎn)O為原點(diǎn)建立平面直角坐標(biāo)系xOy.取OB的中點(diǎn)C,將過點(diǎn)A、C、B的拋物線記為拋物線T.
①求拋物線T的函數(shù)解析式;
②設(shè)拋物線T的頂點(diǎn)為點(diǎn)D.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,設(shè)正方形PQMN的對角線PM、QN交于點(diǎn)E,連接DE、DN.是否存在這樣的t,使得△DEN是以EN、DE為兩腰或以EN、DN為兩腰的等腰三角形?若存在,請求出對應(yīng)的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案