【題目】如圖,在矩形中,延長(zhǎng)至點(diǎn),且,中點(diǎn),連結(jié),

1)求證:的面積是的面積的倍.

2)若,求的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)過(guò)點(diǎn)FGHCD,分別交AB,CD于點(diǎn)G,H.根據(jù)四邊形ABCD是矩形,中點(diǎn),可證得BGF≌△EHF,得GF=HF,ABF的面積=,DEF的面積=,又因?yàn)?/span>AB=3DE,即可求證ABF的面積是DEF的面積的3倍.

2)設(shè)DE=a,則CD=3a,BE=6a,EC=4a,由勾股定理即可求出a,進(jìn)而求出BE

1)證明:過(guò)點(diǎn)FGHCD,分別交AB,CD于點(diǎn)G,H

ABCD,∴∠GBF=E,∠BGF=EHF

FBE中點(diǎn),∴BF=EF

∴△BGF≌△EHFAAS). GF=HF

FHCD,ABCD,∴GFAB

∴△ABF的面積=DEF的面積=,

AB=3DEGF=HF,

∴△ABF的面積是DEF的面積的3倍.

2)設(shè)DE=a,則CD=AB=3aBE=2AB=6a,

EC=ED+CD=a+3a=4a

由勾股定理,得,

,解得,或(舍去).

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)DAC上,DEAB于點(diǎn)E,且CDDE.點(diǎn)FBC上,連接EF,AF,若∠CEF45°,∠B2CAF,BF2,則AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上,點(diǎn)在第三象限的雙曲線上,過(guò)點(diǎn)軸交雙曲線于點(diǎn),連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正偶數(shù)按下表排成5列:

第一列

第二列

第三列

第四列

第五列

第一行

2

4

6

8

第二行

16

14

12

10

第三行

18

20

22

24

第四行

32

30

28

26

……

根據(jù)上面規(guī)律,2020應(yīng)在(

A.125行,3B.125行,2C.253行,2D.253行,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)箱子內(nèi)有顆相同的球,將顆球分別標(biāo)示號(hào)碼,,今浩浩以每次從箱子內(nèi)取一顆球且取后放回的方式抽取,并預(yù)計(jì)取球次,現(xiàn)已取了次,取出的號(hào)碼依次為,,若每次取球時(shí),任一顆球被取到的機(jī)會(huì)皆相等,且取出的號(hào)碼即為得分?jǐn)?shù),浩浩打算依計(jì)劃繼續(xù)從箱子取球次,則發(fā)生“這次得分的平均數(shù)在之間(含)”的情形的概率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將二次函數(shù)yax2的圖象先向下平移2個(gè)單位,再向右平移3個(gè)單位,截x軸所得的線段長(zhǎng)為4,則a=(

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角系中,點(diǎn)Ax軸正半軸上,點(diǎn)By軸正半軸上,∠ABO30°,AB2,以AB為邊在第一象限內(nèi)作等邊△ABC,反比例函數(shù)的圖象恰好經(jīng)過(guò)邊BC的中點(diǎn)D,邊AC與反比例函數(shù)的圖象交于點(diǎn)E

1)求反比例函數(shù)的解析式;

2)求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:

問(wèn)題情境:(1)如圖1,四邊形中,,點(diǎn)邊的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),求證:;(表示面積)

問(wèn)題遷移:(2)如圖2:在已知銳角內(nèi)有一個(gè)定點(diǎn).過(guò)點(diǎn)任意作一條直線分別交射線于點(diǎn).小明將直線繞著點(diǎn)旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線在什么位置時(shí),的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門(mén)計(jì)劃以公路和經(jīng)過(guò)防疫站的一條直線為隔離線,建立個(gè)面積最小的三角形隔離區(qū),若測(cè)得試求的面積.(結(jié)果保留根號(hào))(參考數(shù)據(jù):)

拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)分別為,過(guò)點(diǎn)的直線與四邊形一組對(duì)邊相交,將四邊形分成兩個(gè)四邊形,求其中以點(diǎn)為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張琪和爸爸到曲江池遺址公園運(yùn)動(dòng),兩人同時(shí)從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時(shí)到家張琪和爸爸在整個(gè)運(yùn)動(dòng)過(guò)程中離家的路點(diǎn)y1(米),y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示

1)求爸爸返問(wèn)時(shí)離家的路程y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系式;

2)張琪開(kāi)始返回時(shí)與爸爸相距多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案