【題目】如圖,正方形 ABCD,點(diǎn) E,F 分別在 AD,CD 上,且DE=CF,AF 與 BE 相交于點(diǎn)G.
(1)求證:AF⊥BE;
(2)若 AB=6,DE=2,AG的長(zhǎng)
【答案】(1)見(jiàn)解析;(2) .
【解析】
(1)由正方形的性質(zhì)得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS證明△BAE≌△ADF,即可得出結(jié)論;
(2)由(1)得∠AGE=90°,由勾股定理得出BE=,在Rt△ABE中,由三角形面積即可得出結(jié)果.
解;(1)證明:∵四邊形ABCD是正方形,
∴∠BAE=∠ADF=90°,AB=AD=CD,
∵DE=CF,
∴AE=DF,
在△BAE和△ADF中,
,
∴△BAE≌△ADF(SAS),
∴∠EAF=∠ABE,
∵∠ABE+∠AEG=90°,
∴∠EAF+∠AEG=90°即∠AGE=90°,
∴AF⊥BE.
(2)解:由(1)得:∠AGE=90°,
∵AB=6,DE=2,
∴AE=4,
∴BE= ,
在Rt△ABE中,
AB×AE=BE×AG,∴AG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)閱讀下列材料:
(1)關(guān)于x的方程x2-3x+1=0(x≠0)方程兩邊同時(shí)乘以得: 即, ,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根據(jù)以上材料,解答下列問(wèn)題:
(1)x2-4x+1=0(x≠0),則= ______ , = ______ , = ______ ;
(2)2x2-7x+2=0(x≠0),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG,CF.下列結(jié)論:①點(diǎn)G是BC中點(diǎn);②FG=FC;③.
其中正確的是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準(zhǔn)備運(yùn)給甲、乙兩地的承包商進(jìn)行包銷(xiāo).該基地用大、小兩種貨車(chē)共18輛恰好能一次性運(yùn)完這批紅薯,已知這兩種貨車(chē)的載重量分別為14噸/噸和8噸/輛,運(yùn)往甲、乙兩地的運(yùn)費(fèi)如下表:
車(chē)型 | 運(yùn)費(fèi) | |
運(yùn)往甲地/(元/輛) | 運(yùn)往乙地/(元/輛) | |
大貨車(chē) | 720 | 800 |
小貨車(chē) | 500 | 650 |
(1)求這兩種貨車(chē)各用多少輛;
(2)如果安排10輛貨車(chē)前往甲地,其余貨車(chē)前往乙地,其中前往甲地的大貨車(chē)為a輛,總運(yùn)費(fèi)為w元,求w關(guān)于a的函數(shù)關(guān)系式;
(2)在(2)的條件下,若甲地的承包商包銷(xiāo)的紅薯不少于96噸,請(qǐng)你設(shè)計(jì)出使總運(yùn)費(fèi)最低的貨車(chē)調(diào)配方案,并求出最低總運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 為 AC 上一點(diǎn),將△ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長(zhǎng)是( )
A.5B.C.3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,若直線(xiàn)交軸于點(diǎn)、交軸于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.過(guò)點(diǎn),,的拋物線(xiàn).
求拋物線(xiàn)的表達(dá)式;
若與軸平行的直線(xiàn)以秒鐘一個(gè)單位長(zhǎng)的速度從軸向左平移,交線(xiàn)段于點(diǎn)、交拋物線(xiàn)于點(diǎn),求線(xiàn)段的最大值;
如圖②,點(diǎn)為拋物線(xiàn)的頂點(diǎn),點(diǎn)是拋物線(xiàn)在第二象限的上一動(dòng)點(diǎn)(不與點(diǎn)、重合),連接,以為邊作圖示一側(cè)的正方形.隨著點(diǎn)的運(yùn)動(dòng),正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)或恰好落在軸上時(shí),直接寫(xiě)出對(duì)應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,其對(duì)稱(chēng)軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0).下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線(xiàn)上兩點(diǎn),則
y1>y2.其中說(shuō)法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣6,6),以A為頂點(diǎn)的∠BAC的兩邊始終與x軸交于B、C兩點(diǎn)(B在C左面),且∠BAC=45°.
(1)如圖,連接OA,當(dāng)AB=AC時(shí),試說(shuō)明:OA=OB.
(2)過(guò)點(diǎn)A作AD⊥x軸,垂足為D,當(dāng)DC=2時(shí),將∠BAC沿AC所在直線(xiàn)翻折,翻折后邊AB交y軸于點(diǎn)M,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com