【題目】如圖是二次函數(shù)圖象的一部分,其對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0).下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則
y1>y2.其中說(shuō)法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
【答案】C
【解析】
∵二次函數(shù)的圖象的開口向上,∴a>0。
∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c<0。
∵二次函數(shù)圖象的對(duì)稱軸是直線x=﹣1,∴。∴b=2a>0。
∴abc<0,因此說(shuō)法①正確。
∵2a﹣b=2a﹣2a=0,因此說(shuō)法②正確。
∵二次函數(shù)圖象的一部分,其對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0),
∴圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(1,0)。
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,因此說(shuō)法③錯(cuò)誤。
∵二次函數(shù)圖象的對(duì)稱軸為x=﹣1,
∴點(diǎn)(﹣5,y1)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)的坐標(biāo)是(3,y1),
∵當(dāng)x>﹣1時(shí),y隨x的增大而增大,而<3
∴y2<y1,因此說(shuō)法④正確。
綜上所述,說(shuō)法正確的是①②④。故選C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE=OC,連接CE、OE,連接AE交OD于點(diǎn)F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)綠色出行號(hào)召,越來(lái)越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y(元)與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問(wèn)題:
(1)求手機(jī)支付金額y(元)與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;
(2)李老師經(jīng)常騎行共享單車,請(qǐng)根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD,點(diǎn) E,F 分別在 AD,CD 上,且DE=CF,AF 與 BE 相交于點(diǎn)G.
(1)求證:AF⊥BE;
(2)若 AB=6,DE=2,AG的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,直線 y x 4與 x 軸、y 軸分別交于點(diǎn) A、點(diǎn) B,點(diǎn) D 在 y 軸的負(fù)半軸上,若將△DAB 沿著直線 AD 折疊,點(diǎn) B 恰好落在 x 軸正半軸上的點(diǎn) C處.
(1)求直線 CD 的表達(dá)式;
(2)在直線 AB 上是否存在一點(diǎn) P,使得 SPCD SOCD?若存在,直接寫出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線y=2x+3與直線y=﹣2x﹣1.
(1)求兩直線與y軸交點(diǎn)A,B的坐標(biāo);
(2)求兩直線交點(diǎn)C的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是邊上一動(dòng)點(diǎn)(不與、重合),,交于點(diǎn),且,則線段的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)的對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(x1,0),且0<x1<1,下列結(jié)論:①9a-3b+c>0;②b<c;③3a+c>0,其中正確結(jié)論兩個(gè)數(shù)有______。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com