如圖,⊙O的直徑為12cm,弦AB垂直平分半徑OC,那么弦AB的長為( )

A.cm
B.6cm
C.cm
D.cm
【答案】分析:連接AO,利用勾股定理先求出弦AB的一半的長,再乘以2就是弦AB的長度.
解答:解:連接AO
∵弦AB垂直平分半徑OC
∴OA=6cm,OD=DC=3cm,
由勾股定理得,AD==3cm,
∴AB=6cm.
故選C.
點評:此題主要考查了垂徑定理及勾股定理的掌握情況,熟練掌握定理是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑為AB,周長為P1,在⊙O內(nèi)的n個圓心在AB上且依次相外切的等圓,且其中左、右兩側(cè)的等圓分別與⊙O內(nèi)切于A、B,若這n個等圓的周長之和為P2,則P1和P2的大小關(guān)系是(  )
A、P1<P2B、P1=P2C、P1>P2D、不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑為10 cm,弦AB垂直平分半徑OC,則弦AB長為(  )
A、2.5cm
B、5cm
C、5
3
cm
D、10cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南京二模)如圖,⊙O的直徑為10,弦AB的長為8,則點O到AB的距離為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑為10,弦AB的長為8,M是弦AB上的動點,則OM的長的取值范圍是
3≤OM≤5
3≤OM≤5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,圓的直徑為1個單位長度,該圓上的點A與數(shù)軸上表示-1的點重合,將圓沿數(shù)軸滾動1周,點A到達點A′的位置,則點A′表示的數(shù)是
π-1或π+1
π-1或π+1

查看答案和解析>>

同步練習冊答案