【題目】已知,在平面直角坐標(biāo)系中,、,m、n滿(mǎn)足CAB的中點(diǎn),P是線(xiàn)段AB上一動(dòng)點(diǎn),Dx軸正半軸上一點(diǎn),且POPD,DEABE

1)如圖1,當(dāng)點(diǎn)P在線(xiàn)段AB上運(yùn)動(dòng)時(shí),點(diǎn)D恰在線(xiàn)段OA上,則PEAB的數(shù)量關(guān)系為   

2)如圖2,當(dāng)點(diǎn)D在點(diǎn)A右側(cè)時(shí),(1)中結(jié)論是否成立?若成立,寫(xiě)出證明過(guò)程;若不成立,說(shuō)明理由.

3)設(shè)AB5,OPD45°,直接寫(xiě)出點(diǎn)D的坐標(biāo).

【答案】1AB2PE;(2)成立,理由見(jiàn)解析;(3)點(diǎn)D

【解析】

1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出m、n,證明△POC≌△DPE,可得出OCPE,由AB2OC,則結(jié)論得出;

2)根據(jù)等腰直角三角形的性質(zhì)得到∠AOC=∠BOC45°,OCAB,證明△POC≌△DPE,根據(jù)全等三角形的性質(zhì)得到OCPE,可得到答案;

3)證明△POB≌△DPA,得到PAOB5,DAPB,根據(jù)坐標(biāo)與圖形性質(zhì)解答即可.

解:(1)∵(mn)2+|m5|0,

mn0m50,

mn5

A(5,0)、B(05),

ACBC5

∴△AOB為等腰直角三角形,

∴∠AOC=∠BOC45°,OCAB,

POPD,

∴∠POD=∠PDO,

Dx軸正半軸上一點(diǎn),

∴點(diǎn)PBC上,

∵∠POD45°+POC,∠PDO45°+DPE

∴∠POC=∠DPE,

在△POC和△DPE中,

,在此處鍵入公式。

∴△POC≌△DPE(AAS),

OCPE

CAB的中點(diǎn),

AB2OC,

AB2PE

故答案為:AB2PE

2)成立,理由如下:

∵點(diǎn)CAB中點(diǎn),

∴∠AOC=∠BOC45°,OCAB,

POPD,

∴∠POD=∠PDO,

∵∠POD45°﹣∠POC,∠PDO45°﹣∠DPE,

∴∠POC=∠DPE

在△POC和△DPE中,

,

∴△POC≌△DPE(AAS),

OCPE,

又∠AOC=∠BAO45°

OCACAB

AB2PE;

3)∵AB5

OAOB5,

OPPD

∴∠POD=∠PDO67.5°,

∴∠APD=∠PDO﹣∠A22.5°,∠BOP90°﹣∠POD22.5°,

∴∠APD=∠BOP

在△POB和△DPA中,

,

∴△POB≌△DPA(SAS),

PAOB5,DAPB

DAPB55,

ODOADA5(55)105

∴點(diǎn)D的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)P(4,3)和點(diǎn)B(m,n)(其中0<m<4),作BAx軸于點(diǎn)A,連接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和點(diǎn)B的坐標(biāo).

(2)求直線(xiàn)BP的解析式.

(3)直接寫(xiě)出在第一象限內(nèi),使反比例函數(shù)大于一次函數(shù)的x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)分別為,,

向上平移個(gè)單位后得到,請(qǐng)畫(huà)出;

已知點(diǎn)與點(diǎn)關(guān)于直線(xiàn)成軸對(duì)稱(chēng),請(qǐng)畫(huà)出直線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng)的.

軸上存在一點(diǎn),滿(mǎn)足點(diǎn)到點(diǎn)與點(diǎn)距離之和最小,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解初中學(xué)生每天在校體育活動(dòng)的時(shí)間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為_(kāi)__________,圖①中m的值為_(kāi)____________;

(Ⅱ)求統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計(jì)該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,若ABC內(nèi)一點(diǎn)P滿(mǎn)足PAC=PBA=PCB,則點(diǎn)P為ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,EDF=90°,若點(diǎn)Q為DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=(

A.5 B.4 C.3+ D.2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是工人將貨物搬運(yùn)上貨車(chē)常用的方法,把一塊木板斜靠在貨車(chē)車(chē)廂的尾部,形成一個(gè)斜坡,貨物通過(guò)斜坡進(jìn)行搬運(yùn).根據(jù)經(jīng)驗(yàn),木板與地面的夾角為20°(即圖2中∠ACB=20°)時(shí)最為合適,已知貨車(chē)車(chē)廂底部到地面的距離AB=1.5m,木板超出車(chē)廂部分AD=0.5m,請(qǐng)求出木板CD的長(zhǎng)度?

(參考數(shù)據(jù):sin20°≈0.3420,cos20°≈0.9397,精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示,直線(xiàn)l經(jīng)過(guò)點(diǎn)(01),并且與x軸平行,△A1B1C1與△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng).

1)畫(huà)出三角形A1B1C1;

2)若點(diǎn)Pm,n)在AC邊上,則點(diǎn)P關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)P1的坐標(biāo)為   ;

3)在直線(xiàn)l上畫(huà)出點(diǎn)Q,使得QA+QC的值最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上.

1)求證:△AEF∽△ABC;

2)求這個(gè)正方形零件的邊長(zhǎng);

3)如果把它加工成矩形零件如圖2,問(wèn)這個(gè)矩形的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列題目的解題過(guò)程:

已知的三邊,且滿(mǎn)足,試判斷的形狀.

解:∵

是直角三角形

問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):    ;

2)該步正確的寫(xiě)法應(yīng)是:          ;

3)本題正確的結(jié)論為:            .

查看答案和解析>>

同步練習(xí)冊(cè)答案