如圖,直角坐標(biāo)系中,已知點(diǎn)A(2,4),B(5,0),動(dòng)點(diǎn)P從B點(diǎn)出發(fā)沿BO向終點(diǎn)O運(yùn)動(dòng),動(dòng)精英家教網(wǎng)點(diǎn)Q從A點(diǎn)出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位,設(shè)從出發(fā)起運(yùn)動(dòng)了xs.
(1)Q點(diǎn)的坐標(biāo)為
 
(用含x的代數(shù)式表示);
(2)當(dāng)x為何值時(shí),△APQ是一個(gè)以AP為腰的等腰三角形?
(3)記PQ的中點(diǎn)為G.請(qǐng)你探求點(diǎn)G隨點(diǎn)P,Q運(yùn)動(dòng)所形成的圖形,并說明理由.
分析:(1)如果過點(diǎn)A作OB的垂線,不難求出cos∠ABO=
3
5
,sin∠ABO=
4
5
,因此,Q移動(dòng)時(shí),橫向移動(dòng)的速度是1•cos∠ABO=
3
5
單位/秒,縱向移動(dòng)的速度是1•sin∠ABO=
4
5
單位/秒,因此Q得坐標(biāo)就可表示為(2+
3
5
x
,4-
4
5
x
).
(2)有了A、Q的坐標(biāo),如果分別過A、Q做x軸的垂線,通過構(gòu)成的直角三角形,不難用x表示出AQ、AP和PQ的值,然后分AP=AQ,PQ=AP兩種情況進(jìn)行討論,得出x的值.
(3)通過觀察G點(diǎn)似乎應(yīng)該在三角形ABO的中位線上,因此它的軌跡應(yīng)該是個(gè)線段.
可設(shè)AB、BO的中點(diǎn)分別為點(diǎn)M、N,設(shè)MN、PQ相交于點(diǎn)G′,只要證明G′與G重合,也就是G′是QP的中點(diǎn)即可.過點(diǎn)P作PK∥AO交AB于點(diǎn)K.只要證明KM=QM就行了,根據(jù)三角形AOB為等腰三角形,AQ、PK、MN都平行,不難得出AQ=BK,AM=BM,因此便可得出KM=QM了.由此便可得出G′是PQ中點(diǎn),與G重合.
解答:解:(1)(2+
3
5
x
,4-
4
5
x
).

(2)由題意,得P(5-x,0),0<x≤5
由勾股定理
求得PQ2=(
8
5
x
-3)2+(4-
4
5
x
2
AP2=(3-x)2+42
若AQ=AP,則x2=(3-x)2+42,解得x=
25
6

若PQ=AP
則(
8
5
x
-3)2+(4-
4
5
x
2=(3-x)2+42
11
5
x2-10x=0,解得x1=0(舍去),x2=
50
11

經(jīng)檢驗(yàn),當(dāng)x=
25
6
或x=
50
11
時(shí),△APQ是一個(gè)以AP為腰的等腰三角形.

(3)設(shè)AB、BO的中點(diǎn)分別為點(diǎn)M、N,則點(diǎn)G隨點(diǎn)P、Q運(yùn)動(dòng)所形成的圖形是線段MN
設(shè)MN,PQ相交于點(diǎn)G′,過點(diǎn)P作PK∥AO交AB于點(diǎn)K
精英家教網(wǎng)
∴PK∥AO∥MN
∴△A0B∽△KPB∽△MNB.
∵AB=OB
∴BK=BP=AQ,BM=BN
∴BK-BM=AQ-BM,
BK-BM=AQ-AM
即KM=QM
∴PG′=QG′
∴G′是PQ的中點(diǎn)
即點(diǎn)G′與點(diǎn)G重合.
∴點(diǎn)G隨點(diǎn)P、Q運(yùn)動(dòng)所形成的圖形是△OBA的中位線MN.
點(diǎn)評(píng):本題考查綜合應(yīng)用點(diǎn)的坐標(biāo),等腰三角形的判定等知識(shí)進(jìn)行推理論證、運(yùn)算及探究證明的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,A點(diǎn)坐標(biāo)為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,已知點(diǎn)A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點(diǎn)E是直線OC與正方形ABCD的外接圓除點(diǎn)C以外的另一個(gè)交點(diǎn),連接AE與BC相交于點(diǎn)F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點(diǎn),試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對(duì)稱軸l與直線AF相交于點(diǎn)G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線AF的對(duì)稱點(diǎn)在x軸上精英家教網(wǎng)?若存在,請(qǐng)求出所有這樣的點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請(qǐng)解答下列問題:
(1)把△ABC向左平移4個(gè)單位,再向上平移3個(gè)單位,恰好得到△A1B1C1試寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中畫出△A1B1C1
(3)求出線段AA1的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,C點(diǎn)坐標(biāo)為(1,2),原來△ABC各個(gè)頂點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個(gè)頂點(diǎn)坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個(gè)單位長(zhǎng)度,再向
平移
2
2
個(gè)單位長(zhǎng)度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案