【題目】已知數(shù)軸上有A、B、C三個點,分別表示有理數(shù)-12、-5、5,動點PA出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為 t秒。

(1)用含t的代數(shù)式表示P到點A和點C的距離:PA=________ , PC=________。

(2)當點P從點A出發(fā),向點C移動,Q以每秒3個單位從點C出發(fā),向終點A移動,請求出經(jīng)過幾秒點P與點Q兩點相遇?

(3)當點P運動到B點時,QA點出發(fā),以每秒3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A,在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數(shù);如果不能,請說明理由。

【答案】(1))t;27-t;(2)經(jīng)過4.25秒點P與點Q兩點相遇;(3)P表示的數(shù)為-, -, .

【解析】

(1)根據(jù)P點位置進而得出PA,PC的距離;

(2)根據(jù)兩點運動路程之和等于線段AC的長即可得到方程求解;

(3)分別根據(jù)P點與Q點相遇前以及相遇后進而分別分析得出即可.

(1)t;27-t

(2)依題可得:

PA=t,CQ=3t,

P、Q兩點相遇,

t+3t=5-(-12),

解得:t= =4.25,

答:經(jīng)過4.25秒點P與點Q兩點相遇.

(3)依題可得:

AP=t,AC=5+12=17,

∵動點P的速度是每秒1個單位,

∴點P運動到B點時間為:(-5+12)÷1=7(秒),

①當點P在點Q右側(cè),且Q點還沒有追上P點時(如圖1),

∵動點Q的速度是每秒3個單位,

AQ=3(t-7),

P、Q兩點之間的距離為2個單位,

AP=AQ+PQ,

3(t-7)+2=t,

解得:t=;

OP=OA-AP=12-=

∴點P表示的數(shù)為:-;

②當點P在點Q左側(cè),且Q點追上了P點時(如圖2),

∵動點Q的速度是每秒3個單位,

AQ=3(t-7),

P、Q兩點之間的距離為2個單位,

AQ=AP+PQ,

3(t-7)=2+t,

解得:t=

OP=OA-AP=12-=,

∴點P表示的數(shù)為:-.

③當點Q到達C點后,且P點在Q點左側(cè)時(如圖3),

∵動點Q的速度是每秒3個單位,

AC+CQ=3(t-7),

AC=17,

CQ=3(t-7)-17,

P、Q兩點之間的距離為2個單位,

AP+PQ+CQ=AC,

t+2+3(t-7)-17=17,

解得:t=

OP=AP-OA=-12=,

∴點P表示的數(shù)為:

④當點Q到達C點后,且P點在Q點右側(cè)時(如圖4),

AP=t,PQ=2,

AQ=AP-PQ=t-2,

∵動點Q的速度是每秒3個單位,

AC+CQ=3(t-7),

AC=17,

CQ=3(t-7)-17,

P、Q兩點之間的距離為2個單位,

AQ+CQ=AC,

t-2+3(t-7)-17=17,

解得:t=;

OP=AP-OA=-12=

∴點P表示的數(shù)為:.

綜上所述:點P表示的數(shù)為-,-,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)

(2)(3+)(3﹣)﹣(1﹣2

(3)我們已經(jīng)學(xué)習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選一個,并選擇你認為適當?shù)姆椒ń膺@個方程.

①x2﹣4x﹣1=0 ②x(2x+1)=8x﹣3 ③x2+3x+1=0 ④x2﹣9=4(x﹣3)

我選擇第幾個方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB=CD,分別以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,連接AF,DE.
(1)求證:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民使用自來水按如下標準收費(水費按月繳納):

(1)當a=2時,某用戶一個月用了 28m3,求該用戶這個月應(yīng)繳納的水費;

(2)設(shè)某戶月用水量為m立方米, m>20,則該用戶應(yīng)繳納的的水費為________(用含 a、m的整式表示);

(3)當a=2,甲、乙兩用戶一個月共用水 40m3,已知甲用戶繳納的水費超過了24,設(shè)甲用戶這個月用水xm3,試求甲、乙兩用戶一個月共繳納的水費(用含 x的整式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下面各題
(1)計算:
(2)解分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,BAC=90°,AC=AB,以AB為斜邊在ABC內(nèi)部作RtABD,連接CD,若∠ADC=135°,SABD=9,則線段AD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)

進價(元/件)

20

30

售價(元/件)

29

40

(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個組合煙花的橫截面,其中16個圓的半徑相同,點A、B、C、D分別是四個角上的圓的圓心,且四邊形ABCD為正方形.若圓的半徑為r,組合煙花的高為h,則組合煙花側(cè)面包裝紙的面積至少需要(接縫面積不計)(
A.26πrh
B.24rh+πrh
C.12rh+2πrh
D.24rh+2πrh

查看答案和解析>>

同步練習冊答案