【題目】如圖,A是以BC為直徑的O上一點(diǎn),IABC的內(nèi)心,AI的延長(zhǎng)線交O于點(diǎn)D,過(guò)點(diǎn)DBC的平行線交AB、AC的延長(zhǎng)線于E、F.下列說(shuō)法:①△DBC是等腰直角三角形;EFO相切;EF=2BC;點(diǎn)B、I、C在以點(diǎn)D 為圓心的同一個(gè)圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

【答案】①②④

【解析】

根據(jù)內(nèi)心的定義得到∠BAD=CAD,再根據(jù)圓周角定理得到BD=CD,即可判斷①;

根據(jù)直角三角形的性質(zhì)即可判斷②,根據(jù)三角形的中位線性質(zhì)判斷③即可,連接BI、CI,根據(jù)三角形的內(nèi)心及三角形的外角的性質(zhì)求出DB=DI,即可判斷④.

IABC的內(nèi)心,

∴∠BAD=CAD,

BD=CD,

BC⊙O的直徑,

∴∠BDC=90°,

∴△DBC是等腰直角三角形,故①正確;

連接OD,

BC⊙O的直徑,BD=CD,

ODBC,

EFBC,

ODEF,

EFO相切,故②正確;

∵點(diǎn)B、C不是AEAF的中點(diǎn),

BC不是△AEF的中位線,

,故③錯(cuò)誤;

連接BI、CI,

IABC的內(nèi)心,

∴∠ABI=CBI,

∵∠BAD=CAD=CBD,

∴∠CBD+CBI=BAD+ABI

∴∠DBI=DIB,

DB=DI=DC,

∴點(diǎn)B、I、C在以點(diǎn)D 為圓心的同一個(gè)圓上,故④正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的頂點(diǎn)的坐標(biāo)是,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng).點(diǎn)的運(yùn)動(dòng)速度均為每秒1個(gè)單位,過(guò)點(diǎn)于點(diǎn),一點(diǎn)到達(dá),另一點(diǎn)即停.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)填空:用含的代數(shù)式表示下列各式

____________________

2)①當(dāng)時(shí),求點(diǎn)到直線的距離.

②當(dāng)點(diǎn)到直線的距離等于時(shí),直接寫出的值.

3)在動(dòng)點(diǎn)、運(yùn)動(dòng)的過(guò)程中,點(diǎn)是矩形(包括邊界)內(nèi)一點(diǎn),且以、、、為頂點(diǎn)的四邊形是菱形,直接寫出點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,完成(1)﹣(3)題

數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,ADBC,AB=AD,E為對(duì)角線AC上一點(diǎn),∠BEC=BAD=2DEC,探究ABBC的數(shù)量關(guān)系.

某學(xué)習(xí)小組的同學(xué)經(jīng)過(guò)思考,交流了自己的想法:

小柏:“通過(guò)觀察和度量,發(fā)現(xiàn)ACB=ABE”;

小源:“通過(guò)觀察和度量,AEBE存在一定的數(shù)量關(guān)系”;

小亮:“通過(guò)構(gòu)造三角形全等,再經(jīng)過(guò)進(jìn)一步推理,就可以得到線段ABBC的數(shù)量關(guān)系”.

……

老師:“保留原題條件,如圖2, AC上存在點(diǎn)F,使DF=CF=AE,連接DF并延長(zhǎng)交BC于點(diǎn)G,求的值”.

1)求證:ACB=ABE

2)探究線段ABBC的數(shù)量關(guān)系,并證明;

3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠B=90°,AB=12BC=16,點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B1cm/s的速度移動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C2cm/s的速度移動(dòng).如果P、Q分別從A、B同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)停止運(yùn)動(dòng),問(wèn):

1)經(jīng)過(guò)幾秒后,PBQ的面積等于20cm2?

2PBQ的面積會(huì)等于ABC的面積的一半嗎?若會(huì),請(qǐng)求出此時(shí)的運(yùn)動(dòng)時(shí)間;若不會(huì),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)yxy=﹣x的圖象分別為直線l1,l2,過(guò)l1上的點(diǎn)A11,)作x軸的垂線交l2于點(diǎn)A2,過(guò)點(diǎn)A2y軸的垂線交l1于點(diǎn)A3,過(guò)點(diǎn)A3x軸的垂線交l2于點(diǎn)A4,…依次進(jìn)行下去,則點(diǎn)A2019的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(動(dòng)手操作)

如圖,把長(zhǎng)為l、寬為h的矩形卷成以AB為高的圓柱形,則點(diǎn)A與點(diǎn)______重合,點(diǎn)B與點(diǎn)______重合;

(探究發(fā)現(xiàn))

如圖,圓柱的底面周長(zhǎng)是80,高是60,若在圓柱體的側(cè)面繞一圈絲線作裝飾,從下底面A出發(fā),沿圓柱側(cè)面繞一周到上底面B,則這條絲線最短的長(zhǎng)度是______;

(實(shí)踐應(yīng)用)

如圖,圓錐的母線長(zhǎng)為12,底面半徑為4,若在圓錐體的側(cè)面繞一圈彩帶做裝飾,從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面繞一周回到點(diǎn)A.求這條彩帶最短的長(zhǎng)度是多少?

(拓展聯(lián)想)

如圖,一顆古樹上下粗細(xì)相差不大,可以看成圓柱體.測(cè)得樹干的周長(zhǎng)為3米,高為18米,有一根紫藤自樹底部均勻的盤繞在樹干上,恰好繞8周到達(dá)樹干的頂部,這條紫藤至少有

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將與2022220日在北京舉行,北京將成為歷史上第一座舉辦過(guò)夏奧會(huì)又舉辦過(guò)冬奧會(huì)的城市,東寶區(qū)舉辦了一次冬奧會(huì)知識(shí)網(wǎng)上答題競(jìng)賽,甲、乙兩校各有400名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績(jī)情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

(收集數(shù)據(jù))

從甲、乙兩校各隨機(jī)抽取20名學(xué)生,在這次競(jìng)賽中它們的成績(jī)?nèi)缦拢?/span>

30

60

60

70

60

80

30

90

100

60

60

100

80

60

70

60

60

90

60

60

80

90

40

60

80

80

90

40

80

50

80

70

70

70

70

60

80

50

80

80

(整理、描述數(shù)據(jù))按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

(說(shuō)明:優(yōu)秀成績(jī)?yōu)?/span>80<x≤100,良好成績(jī)?yōu)?/span>50<x≤80,合格成績(jī)?yōu)?/span>30≤x≤50.)

學(xué)校

平均分

中位數(shù)

眾數(shù)

67

60

60

70

75

a

30≤x≤50

50<x≤80

80<x≤100

2

14

4

4

14

2

(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a=  

(得出結(jié)論)

(1)小偉同學(xué)說(shuō):這次競(jìng)賽我得了70分,在我們學(xué)校排名屬中游略偏上!由表中數(shù)據(jù)可知小明是  校的學(xué)生;(填”)

(2)老師從乙校隨機(jī)抽取一名學(xué)生的競(jìng)賽成績(jī),試估計(jì)這名學(xué)生的競(jìng)賽成績(jī)?yōu)閮?yōu)秀的概率為  ;

(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競(jìng)賽成績(jī)較好的學(xué)校,并說(shuō)明理由.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種落地晾衣架如圖①所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整晾衣桿的高度.圖②是支撐桿的平面示意圖,ABCD分別是兩根不同長(zhǎng)度的支撐桿,夾角∠BODα.若AO85 cm,BODO65 cm.問(wèn):當(dāng)α74°時(shí),較長(zhǎng)支撐桿的端點(diǎn)A離地面的高度h約為______cm.(參考數(shù)據(jù):sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角△ABC內(nèi)接于O,ADBC于點(diǎn)D,連接AO

1)如圖1,求證:∠BAO=∠CAD

2)如圖2,CEAB于點(diǎn)E,交AD于點(diǎn)F,過(guò)點(diǎn)OOHBC于點(diǎn)H,求證:AF2OH;

3)如圖3,在(2)的條件下,若AFAO,tanBAO,BC,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案