【題目】如圖,等腰三角形ABC底邊BC的長為4 cm,面積為12 cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為( )
A. 5 cm B. 6 cm C. 8 cm D. 10 cm
【答案】C
【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.
如圖,連接AD.
∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BCAD=×4×AD=12,解得:AD=6(cm).
∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結(jié)論就是著名的勾股定理.請利用這個結(jié)論,完成下面活動:
一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____;
如圖①,于,求的長度;
如圖②,點在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)的點(保留痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司引進,兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續(xù)搬運小時,種機器人于某日時開始搬運,過了小時,種機器人也開始搬運,如圖,線段表示種機器人的搬運量(千克)與時間(時)的函數(shù)圖像,線段表示種機器人的搬運量(千克)與時間(時)的函數(shù)圖像,根據(jù)圖像提供的信息,解答下列問題:
(1)求關(guān)于的函數(shù)解析式;
(2)如果、兩種機器人連續(xù)搬運個小時,那么種機器人比種機器人多搬運了多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由6個長為2,寬為1的小矩形組成的大矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,由格點構(gòu)成的幾何圖形稱為格點圖形(如:連接2個格點,得到一條格點線段;連接3個格點,得到一個格點三角形;…),請按要求作圖(標(biāo)出所畫圖形的頂點字母).
(1)畫出4種不同于示例的平行格點線段;
(2)畫出4種不同的成軸對稱的格點三角形,并標(biāo)出其對稱軸所在線段;
(3)畫出1個格點正方形,并簡要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)和.
(1)求證:
(2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘廣告策劃人員一名,對甲、乙、丙三名候選人進行三項素質(zhì)測試,他們的各項測試成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
創(chuàng)新 | 72 | 85 | 67 |
綜合知識 | 50 | 74 | 70 |
語言 | 88 | 45 | 67 |
(1)如果根據(jù)三項測試的平均成績確定錄用人選,那么誰將被錄用?
(2)根據(jù)實際需要,公司將創(chuàng)新、綜合知識、語言三項測試得分按5:3:2的比例確定各人的測試成績,此時誰將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.
(1)若商場預(yù)計進貨款為3500元,求A型、B型節(jié)能燈各購進多少盞?
根據(jù)題意,先填寫下表,再完成本問解答:
型號 | A型 | B型 |
購進數(shù)量(盞) | x | _____ |
購買費用(元) | _____ | _____ |
(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點關(guān)于x軸的對稱點和點關(guān)于y軸的對稱點相同,則點關(guān)于x軸對稱的點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當(dāng)∠B= 時,四邊形OCAD是菱形;
②當(dāng)∠B= 時,AD與相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com