【題目】平行四邊形ABCD中,BECD,BFAD,垂足分別為E、F,若CE=2,DF=1,EBF=60°,求平行四邊形ABCD的面積.

【答案】.

【解析】

根據(jù)四邊形的內(nèi)角和等于360°,求出∠D=120°,根據(jù)平行四邊形的性質(zhì)得到∠A=∠C=60°,進一步求出∠ABF=∠EBC=30°,根據(jù)CE=2,DF=1,求出BC、AB的長,根據(jù)勾股定理求出BE的長,根據(jù)平行四邊形的面積公式即可求出答案.

BECDBFAD,

∴∠BEC=∠BFD=90°,

∵∠EBF=60°,∠D+∠BED+∠BFD+∠EBF=360°,

∴∠D=120°,

平行四邊形ABCD

DCAB,ADBC,∠A=∠C,

∴∠A=∠C=180°-120°=60°,

∴∠ABF=∠EBC=30°,

AD=BC=2EC=4

BEC中由勾股定理得:BE=

ABFAF=4-1=3,

∵∠ABF=30,

AB=6,

平行四邊形ABCD的面積是ABBE=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難說明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關系并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA,OC分別在x軸、y軸上,點B坐標為(4,t)(t>0),二次函數(shù)y=x2+bx(b<0)的圖象經(jīng)過點B,頂點為點D.

(1)當t=12時,頂點D到x軸的距離等于;
(2)點E是二次函數(shù)y=x2+bx(b<0)的圖象與x軸的一個公共點(點E與點O不重合),求OEEA的最大值及取得最大值時的二次函數(shù)表達式;
(3)矩形OABC的對角線OB、AC交于點F,直線l平行于x軸,交二次函數(shù)y=x2+bx(b<0)的圖象于點M、N,連接DM、DN,當△DMN≌△FOC時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題:如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于
(1)【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于

(2)【探究】
圖2是同學們熟悉的一副三角尺,一個含有30°的角,較短的直角邊長為a;另一個含有45°的角,直角邊長為b,小明用兩副這樣的三角尺拼成一個平行四邊形ABCD(如圖3),用了兩種不同的方法計算它的面積,從而推出sin75°= ,小麗用兩副這樣的三角尺拼成了一個矩形EFGH(如圖4),也推出sin75°= ,請你寫出小明或小麗推出sin75°= 的具體說理過程.

(3)【應用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5)

①點E在AD上,設t=BE+CE,求t2的最小值;
②點F在AB上,將△BCF沿CF翻折,點B落在AD上的點G處,點G是AD的中點嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面上四點A,BC,D,按下列要求畫出圖形;

(1)射線AB,直線CB

(2)取線段AB的中點E,連接DE并延長與直線CB交于點O;

(3)在所畫的圖形中,若AB6,BEBCOB,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個角的差的絕對值等于,就稱這兩個角互為反余角,其中一個角叫做另一個角的反余角,例如,,,,則互為反余角,其中的反余角,也是的反余角.

如圖為直線AB上一點,于點O,于點O,則的反余角是______,的反余角是______;

若一個角的反余角等于它的補角的,求這個角.

如圖2,O為直線AB上一點,,將繞著點O以每秒角的速度逆時針旋轉得,同時射線OP從射線OA的位置出發(fā)繞點O以每秒角的速度逆時針旋轉,當射線OP與射線OB重合時旋轉同時停止,若設旋轉時間為t秒,求當t為何值時,互為反余角圖中所指的角均為小于平角的角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,,以B點為直角頂點在第二象限作等腰直角

C點的坐標;

在坐標平面內(nèi)是否存在一點P,使全等?若存在,直接寫出P點坐標,若不存在,請說明理由;

如圖2,點Ey軸正半軸上一動點,以E為直角頂點作等腰直角,過M軸于N,直接寫出的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD交于點O,EAB中點,點FCB的延長線上,且EFBD.

(1)求證:四邊形OBFE是平行四邊形;

(2)當線段ADBD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題:
(1)計算:( ﹣1)0﹣(﹣ 2+ tan30°;
(2)解方程: + =1.

查看答案和解析>>

同步練習冊答案