【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)(k>0)的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C(4,0),且點(diǎn)B(3,n),連接OB.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△BOC的面積;
(3)將直線(xiàn)AB向下平移,若平移后的直線(xiàn)與反比例函數(shù)的圖象只有一個(gè)交點(diǎn),試說(shuō)明直線(xiàn)AB向下平移了幾個(gè)單位長(zhǎng)度.
【答案】(1)y=﹣x+4,y=;(2)2;(3)4+2或4﹣2
【解析】
(1)用待定系數(shù)法即可求解;
(2)△BOC的面積=OC×BD=×4×1=2;
(3)直線(xiàn)AB向下平移m個(gè)單位后和反比例函數(shù)只有一個(gè)公共點(diǎn),則=﹣x+4﹣m,整理得:x2+(m﹣4)x+3=0,△=b2﹣4ac=0,即可求解.
(1)將點(diǎn)C的坐標(biāo)代入一次函數(shù)表達(dá)式y=﹣x+b并解得:b=4,
故一次函數(shù)的表達(dá)式為:y=﹣x+4,
將點(diǎn)B的坐標(biāo)代入y=﹣x+4得:n=﹣3+4=1,故點(diǎn)B(3,1),
將點(diǎn)B的坐標(biāo)代入反比例函數(shù)表達(dá)式并解得:k=3,
故反比例函數(shù)表達(dá)式為:y=;
(2)過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D,則BD=1,又OC=4,
則△BOC的面積=OC×BD=×4×1=2;
(3)將直線(xiàn)AB向下平移m個(gè)單位(m>0)得到直線(xiàn)的表達(dá)式為:y=﹣x+4+m,
∵直線(xiàn)AB向下平移m個(gè)單位后和反比例函數(shù)只有一個(gè)公共點(diǎn),則=﹣x+4﹣m,整理得:x2+(m﹣4)x+3=0,
∴△=b2﹣4ac=(m﹣4)2﹣4×1×3=0,解得:m=4±2,
故直線(xiàn)AB向下平移了4+2或4﹣2個(gè)長(zhǎng)度單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新學(xué)期開(kāi)始時(shí),某校九年級(jí)一班的同學(xué)為了增添教室綠色文化,打造溫馨舒適的學(xué)習(xí)環(huán)境,準(zhǔn)備到一家植物種植基地購(gòu)買(mǎi)A、B兩種花苗.據(jù)了解,購(gòu)買(mǎi)A種花苗3盆,B種花苗5盆,則需210元;購(gòu)買(mǎi)A種花苗4盆,B種花苗10盆,則需380元.
(1)求A、B兩種花苗的單價(jià)分別是多少元?
(2)經(jīng)九年級(jí)一班班委會(huì)商定,決定購(gòu)買(mǎi)A、B兩種花苗共12盆進(jìn)行搭配裝扮教室.種植基地銷(xiāo)售人員為了支持本次活動(dòng),為該班同學(xué)提供以下優(yōu)惠:購(gòu)買(mǎi)幾盆B種花苗,B種花苗每盆就降價(jià)幾元,請(qǐng)你為九年級(jí)一班的同學(xué)預(yù)算一下,本次購(gòu)買(mǎi)至少準(zhǔn)備多少錢(qián)?最多準(zhǔn)備多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近日,在公安部交通管理局部署下,全國(guó)各地交警都在大力開(kāi)展|一盔一帶安全守護(hù)行動(dòng),為了解市民對(duì)騎電動(dòng)車(chē)戴頭盔的贊同情況,某課題小組隨機(jī)調(diào)查了部分市民,并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上統(tǒng)計(jì)圖回答一下問(wèn)題:
(1)這次調(diào)查的市民共_______人;
(2)若選擇的人數(shù)是選擇的人數(shù)的3倍,則扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是______;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬(wàn)人,請(qǐng)估計(jì)安全意識(shí)淡。ㄟx擇D或E)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖,若菱形AECF與正方形ABCD兩個(gè)頂點(diǎn)A,C重合,另外兩個(gè)頂點(diǎn)E,F在正方形ABCD的內(nèi)部,則稱(chēng)菱形AECF為正方形ABCD的內(nèi)含菱形.
若正方形的周長(zhǎng)為16,其內(nèi)含菱形邊長(zhǎng)是整數(shù),則內(nèi)含菱形的周長(zhǎng)為________;
若正方形的面積為18,其內(nèi)含菱形的面積為6,則內(nèi)含菱形的邊長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線(xiàn)對(duì)稱(chēng)軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售,兩種商品,售出2件種商品和3件種商品所得利潤(rùn)為700元;售出3件種商品和5件種商品所得利潤(rùn)為1100元.
(1)求每件種商品和每件種商品售出后所得利潤(rùn)分別為多少元;
(2)由于需求量大,,兩種商品很快售完,商場(chǎng)決定再一次購(gòu)進(jìn),兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么此商場(chǎng)至少需購(gòu)進(jìn)多少件種商品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書(shū)中有一個(gè)問(wèn)題:“今有黃金九枚,白銀一十一枚,稱(chēng)之重適等.交易其一,金輕十三兩.問(wèn)金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱(chēng)重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問(wèn)黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠BAC的角平分線(xiàn)AD交BC邊于D,以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過(guò)點(diǎn)A和點(diǎn)D,與AB邊的另一個(gè)交點(diǎn)為E.
(1)判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為4,∠B=30°.求線(xiàn)段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)(x0)的圖象恰好經(jīng)過(guò)點(diǎn)F,M.若直尺的寬CD=2,三角板的斜邊FG=,則k=____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com