已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點,A(x1,0),B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線與直線BC的解析式;
(2)在所給出的直角坐標系中作出拋物線的圖象.
(1)解得m1=1,n2=-
5
7

∵m>O,
∴m=1,
∴拋物線的解析式為:y=x2+4x-5.
∴A(-5,0)B(1,0)C(0,-5),
直線BC的解析式為y=5x-5.

(2)作圖.(圖形基本正確(1分),A、B、C及頂點位置正確再得(1分),共得2分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
3
8
x2-
3
4
x+c分別交x軸的負半軸和正半軸于點A(x1,0)、B(x2,0),交y軸的負軸于點C,且tan∠OAC=2tan∠OBC,動點P從點A出發(fā)向終點B運動,同時動點Q從點B出發(fā)向終點C運動,P、Q的運動速度均為每秒1個單位長度,且當其中有一個點到達終點時,另一個點也隨之停止運動,設運動的時間是t秒.

(1)試說明OB=2OA;
(2)求拋物線的解析式;
(3)當t為何值時,△PBQ是直角三角形?
(4)當t為何值時,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于C點.
(1)直接寫出拋物線的解析式及其頂點Q的坐標;
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最。堅趫D中畫出點P的位置,并求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標為(0,-2),交x軸于A、B兩點,其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,拋物線y=-
1
2
x2+mx-n與x軸交于A、B兩點.與y軸交于C點.已知A、B兩點都在x軸負半軸上(A左B右),△AOC與△COB相似,且tan∠CBO=4tan∠BCO.
(1)求拋物線的解析式;
(2)若此拋物線的對稱軸與直線y=nx交于D.以D為圓心,作與x軸相切的圓,交y軸于M、N兩點.求劣弧MN所對的弓形面積;
(3)在y軸上是否存在一點F,使得FD+FA的值最小,若存在,求出△ABF的面積,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=-x2+bx+c的圖象如圖所示,下列幾個結論:
①對稱軸為x=2;②當y>0時,x<0或x>4;③函數(shù)解析式為y=-x(x-4);④當x≤0時,y隨x的增大而增大.其中正確的結論有______(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進行集中處理,另一種是通過企業(yè)的自身設備進行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設備處理污水,兩種處理方式同時進行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關系如下表:
月份x(月)123456
輸送的污水量y1(噸)1200060004000300024002000
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數(shù)關系式:z1=
1
2
x
,該企業(yè)自身處理每噸污水的費用:z2(元)與月份x之間滿足函數(shù)關系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識,分別直接寫出y1,y2與x之間的函數(shù)關系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設備的全面運行,該企業(yè)決定擴大產(chǎn)能并將所有污水全部自身處理,估計擴大產(chǎn)能后今年每月的污水量都將在去年每月的基礎上增加a%,同時每噸污水處理的費用將在去年12月份的基礎上增加(a-30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負擔,財政對企業(yè)處理污水的費用進行50%的補助.若該企業(yè)每月的污水處理費用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):
231
≈15.2,
419
≈20.5,
809
≈28.4)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線y=-x2+2x+3與x軸交于A、B兩點,直線BD的函數(shù)表達式為y=-
3
x+3
3
,拋物線的對稱軸l與直線BD交于點C、與x軸交于點E.
(1)求A、B、C三個點的坐標;
(2)點P為線段AB上的一個動點(與點A、點B不重合),以點A為圓心、以AP為半徑的圓弧與線段AC交于點M,以點B為圓心、以BP為半徑的圓弧與線段BC交于點N,分別連接AN、BM、MN.
①求證:AN=BM;
②在點P運動的過程中,四邊形AMNB的面積有最大值還是有最小值?并求出該最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一個拋物線形的拱形隧道,隧道的最大高度為6m,跨度為8m,把它放在如圖所示的平面直角坐標系中.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)若要在隧道壁上點P(如圖)安裝一盞照明燈,燈離地面高4.5m.求燈與點B的距離.

查看答案和解析>>

同步練習冊答案