【題目】霧霾是對(duì)大氣中各種懸浮顆粒物含量超標(biāo)的籠統(tǒng)表述,霧霾的主要危害可歸納為兩種:一是對(duì)人體產(chǎn)生危害,二是對(duì)交通產(chǎn)生危害.霧霾天氣是一種大氣污染狀態(tài),成都市區(qū)冬天霧霾天氣比較嚴(yán)重,很多家庭興起了為家里添置“空氣清潔器”的熱潮,為此,我市某商場(chǎng)根據(jù)民眾健康要,代理銷售某種進(jìn)價(jià)為600元/臺(tái)的家用“空氣清潔器”.經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是700元/臺(tái)時(shí),可售出350臺(tái),且售價(jià)每提高10元,就會(huì)少售出5臺(tái).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;
(2)請(qǐng)計(jì)算當(dāng)售價(jià)x(元臺(tái))定為多少時(shí),該商場(chǎng)每月銷售這種“空氣清潔器”所獲得的利潤(rùn)W(元)最大?最大利潤(rùn)是多少?
(3)若政府計(jì)劃遴選部分商場(chǎng),將銷售“空氣清潔器”納入民生工程項(xiàng)目,規(guī)定:每銷售一臺(tái)“空氣淸潔器”,財(cái)政補(bǔ)貼商家200元,但銷售利潤(rùn)不能高于進(jìn)價(jià)的25%,請(qǐng)問:該商場(chǎng)想獲取最大利潤(rùn),是否參與競(jìng)標(biāo)此民生工程項(xiàng)目?并說明理由.
【答案】(1);(2)當(dāng)x=100時(shí),w=80000;(3)該商場(chǎng)想獲取最大利潤(rùn),會(huì)參與競(jìng)標(biāo)此民生工程項(xiàng)目.
【解析】
(1)由題意得:y=350﹣ (x﹣700),即可求解;
(2)由題意得:w=y(x﹣600),即可求解;
(3)每臺(tái)銷售利潤(rùn)不能高于進(jìn)價(jià)的25%,即600×(1+25%)=750,即:x≤750,由題意得:w=(700﹣x)(x﹣600+200)=﹣(x﹣1400)(x﹣400),x≤750時(shí),當(dāng)x=750時(shí),取得最大值利潤(rùn),即可求解.
(1)由題意得:y=350﹣(x﹣700)=﹣ x+700;
(2)由題意得:w=y(x﹣600)=﹣(x﹣600)(x﹣1400),
∵-<0,故函數(shù)有最大值,當(dāng)x=﹣=100時(shí),w=80000;
(3)每臺(tái)銷售利潤(rùn)不能高于進(jìn)價(jià)的25%,即600×(1+25%)=750,即:x≤750,
由題意得:w=(700﹣x)(x﹣600+200)=﹣(x﹣1400)(x﹣400),
x≤750時(shí),當(dāng)x=750時(shí),取得最大值利潤(rùn)為:113750>80000,
故:該商場(chǎng)想獲取最大利潤(rùn),會(huì)參與競(jìng)標(biāo)此民生工程項(xiàng)目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤(rùn)是多少?
(2)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是正方形的邊的中點(diǎn),以為邊作正方形 ,與交于點(diǎn),聯(lián)結(jié).
(1)求證:;
(2)設(shè),求證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=6,AD=10,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(x),當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)E、F、G、H分別在AB、BC、CD、AD邊上且AE=CG,AH=CF.
(1)求證:四邊形EFGH是平行四邊形;
(2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長(zhǎng)線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點(diǎn)P(m,0)旋轉(zhuǎn)180°,所得的圖象經(jīng)過(0.﹣1),則m的值為( 。
A.﹣2B.﹣1C.1D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表提供的信息,解答下列問題:
分?jǐn)?shù)段 (分?jǐn)?shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
(1)表中的a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來描述成績(jī)分布情況,則分?jǐn)?shù)段70≤x<80對(duì)應(yīng)的圓心角的度數(shù)是 ;
(4)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機(jī)抽取2名同學(xué)接受電視臺(tái)記者采訪,請(qǐng)用列表或畫樹狀圖的方法求正好抽到一名男同學(xué)和一名女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com